3.17.87
Optimal. Leaf size=21
________________________________________________________________________________________
Rubi [F] time = 3.37, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[E^(E^(2*(-5 - x)*Log[x] + 2*Log[x]*Log[3*E^x*Log[x]^2])*x^2 + 2*(-5 - x)*Log[x] + 2*Log[x]*Log[3*E^x*Log[x
]^2])*(-4*x - 2*x^2 + 2*x*Log[3*E^x*Log[x]^2]),x]
[Out]
-4*Defer[Int][E^(E^(2*(-5 - x)*Log[x] + 2*Log[x]*Log[3*E^x*Log[x]^2])*x^2 + 2*(-5 - x)*Log[x] + 2*Log[x]*Log[3
*E^x*Log[x]^2])*x, x] - 2*Defer[Int][E^(x^(-8 - 2*x + 2*Log[3*E^x*Log[x]^2]) + 2*Log[x]*Log[3*E^x*Log[x]^2])*x
^(-8 - 2*x), x] + 2*Defer[Int][E^(E^(2*(-5 - x)*Log[x] + 2*Log[x]*Log[3*E^x*Log[x]^2])*x^2 + 2*(-5 - x)*Log[x]
+ 2*Log[x]*Log[3*E^x*Log[x]^2])*x*Log[3*E^x*Log[x]^2], x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 1.01, size = 21, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[E^(E^(2*(-5 - x)*Log[x] + 2*Log[x]*Log[3*E^x*Log[x]^2])*x^2 + 2*(-5 - x)*Log[x] + 2*Log[x]*Log[3*E^x
*Log[x]^2])*(-4*x - 2*x^2 + 2*x*Log[3*E^x*Log[x]^2]),x]
[Out]
E^x^(-8 - 2*x + 2*Log[3*E^x*Log[x]^2])
________________________________________________________________________________________
fricas [A] time = 0.89, size = 27, normalized size = 1.29
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*x*log(3*exp(x)*log(x)^2)-2*x^2-4*x)*exp(log(x)*log(3*exp(x)*log(x)^2)+(-x-5)*log(x))^2*exp(x^2*ex
p(log(x)*log(3*exp(x)*log(x)^2)+(-x-5)*log(x))^2),x, algorithm="fricas")
[Out]
e^(x^2*e^(-2*(x + 5)*log(x) + 2*log(3*e^x*log(x)^2)*log(x)))
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*x*log(3*exp(x)*log(x)^2)-2*x^2-4*x)*exp(log(x)*log(3*exp(x)*log(x)^2)+(-x-5)*log(x))^2*exp(x^2*ex
p(log(x)*log(3*exp(x)*log(x)^2)+(-x-5)*log(x))^2),x, algorithm="giac")
[Out]
undef
________________________________________________________________________________________
maple [C] time = 0.36, size = 104, normalized size = 4.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((2*x*ln(3*exp(x)*ln(x)^2)-2*x^2-4*x)*exp(ln(x)*ln(3*exp(x)*ln(x)^2)+(-x-5)*ln(x))^2*exp(x^2*exp(ln(x)*ln(3
*exp(x)*ln(x)^2)+(-x-5)*ln(x))^2),x,method=_RETURNVERBOSE)
[Out]
exp(x^2*(x^(-1/2*I*csgn(I*ln(x)^2)*Pi+I*Pi*csgn(I*ln(x))-1/2*I*Pi*csgn(I*ln(x)^2)*csgn(I*exp(x)*ln(x)^2)*csgn(
I*exp(x))-1/2*I*csgn(I*exp(x)*ln(x)^2)*Pi+1/2*I*Pi*csgn(I*exp(x))+2*ln(ln(x))+ln(exp(x))+ln(3)))^2*(x^(-x-5))^
2)
________________________________________________________________________________________
maxima [A] time = 1.13, size = 20, normalized size = 0.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*x*log(3*exp(x)*log(x)^2)-2*x^2-4*x)*exp(log(x)*log(3*exp(x)*log(x)^2)+(-x-5)*log(x))^2*exp(x^2*ex
p(log(x)*log(3*exp(x)*log(x)^2)+(-x-5)*log(x))^2),x, algorithm="maxima")
[Out]
e^(e^(2*log(3)*log(x) + 4*log(x)*log(log(x)))/x^8)
________________________________________________________________________________________
mupad [B] time = 1.23, size = 20, normalized size = 0.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-exp(2*log(x)*log(3*exp(x)*log(x)^2) - 2*log(x)*(x + 5))*exp(x^2*exp(2*log(x)*log(3*exp(x)*log(x)^2) - 2*l
og(x)*(x + 5)))*(4*x - 2*x*log(3*exp(x)*log(x)^2) + 2*x^2),x)
[Out]
exp((x^(2*log(3))*x^(2*log(log(x)^2)))/x^8)
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*x*ln(3*exp(x)*ln(x)**2)-2*x**2-4*x)*exp(ln(x)*ln(3*exp(x)*ln(x)**2)+(-x-5)*ln(x))**2*exp(x**2*exp
(ln(x)*ln(3*exp(x)*ln(x)**2)+(-x-5)*ln(x))**2),x)
[Out]
Timed out
________________________________________________________________________________________