3.17.87 ee2(5x)log(x)+2log(x)log(3exlog2(x))x2+2(5x)log(x)+2log(x)log(3exlog2(x))(4x2x2+2xlog(3exlog2(x)))dx

Optimal. Leaf size=21 ex82x+2log(3exlog2(x))

________________________________________________________________________________________

Rubi [F]  time = 3.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} exp(exp(2(5x)log(x)+2log(x)log(3exlog2(x)))x2+2(5x)log(x)+2log(x)log(3exlog2(x)))(4x2x2+2xlog(3exlog2(x)))dx

Verification is not applicable to the result.

[In]

Int[E^(E^(2*(-5 - x)*Log[x] + 2*Log[x]*Log[3*E^x*Log[x]^2])*x^2 + 2*(-5 - x)*Log[x] + 2*Log[x]*Log[3*E^x*Log[x
]^2])*(-4*x - 2*x^2 + 2*x*Log[3*E^x*Log[x]^2]),x]

[Out]

-4*Defer[Int][E^(E^(2*(-5 - x)*Log[x] + 2*Log[x]*Log[3*E^x*Log[x]^2])*x^2 + 2*(-5 - x)*Log[x] + 2*Log[x]*Log[3
*E^x*Log[x]^2])*x, x] - 2*Defer[Int][E^(x^(-8 - 2*x + 2*Log[3*E^x*Log[x]^2]) + 2*Log[x]*Log[3*E^x*Log[x]^2])*x
^(-8 - 2*x), x] + 2*Defer[Int][E^(E^(2*(-5 - x)*Log[x] + 2*Log[x]*Log[3*E^x*Log[x]^2])*x^2 + 2*(-5 - x)*Log[x]
 + 2*Log[x]*Log[3*E^x*Log[x]^2])*x*Log[3*E^x*Log[x]^2], x]

Rubi steps

integral=2exp(exp(2(5x)log(x)+2log(x)log(3exlog2(x)))x2+2(5x)log(x)+2log(x)log(3exlog2(x)))x(2x+log(3exlog2(x)))dx=2exp(exp(2(5x)log(x)+2log(x)log(3exlog2(x)))x2+2(5x)log(x)+2log(x)log(3exlog2(x)))x(2x+log(3exlog2(x)))dx=2(exp(exp(2(5x)log(x)+2log(x)log(3exlog2(x)))x2+2(5x)log(x)+2log(x)log(3exlog2(x)))x(2+x)+exp(exp(2(5x)log(x)+2log(x)log(3exlog2(x)))x2+2(5x)log(x)+2log(x)log(3exlog2(x)))xlog(3exlog2(x)))dx=(2exp(exp(2(5x)log(x)+2log(x)log(3exlog2(x)))x2+2(5x)log(x)+2log(x)log(3exlog2(x)))x(2+x)dx)+2exp(exp(2(5x)log(x)+2log(x)log(3exlog2(x)))x2+2(5x)log(x)+2log(x)log(3exlog2(x)))xlog(3exlog2(x))dx=(2(2exp(exp(2(5x)log(x)+2log(x)log(3exlog2(x)))x2+2(5x)log(x)+2log(x)log(3exlog2(x)))x+exp(exp(2(5x)log(x)+2log(x)log(3exlog2(x)))x2+2(5x)log(x)+2log(x)log(3exlog2(x)))x2)dx)+2exp(exp(2(5x)log(x)+2log(x)log(3exlog2(x)))x2+2(5x)log(x)+2log(x)log(3exlog2(x)))xlog(3exlog2(x))dx=(2exp(exp(2(5x)log(x)+2log(x)log(3exlog2(x)))x2+2(5x)log(x)+2log(x)log(3exlog2(x)))x2dx)+2exp(exp(2(5x)log(x)+2log(x)log(3exlog2(x)))x2+2(5x)log(x)+2log(x)log(3exlog2(x)))xlog(3exlog2(x))dx4exp(exp(2(5x)log(x)+2log(x)log(3exlog2(x)))x2+2(5x)log(x)+2log(x)log(3exlog2(x)))xdx=(2exp(x82x+2log(3exlog2(x))+2log(x)log(3exlog2(x)))x82xdx)+2exp(exp(2(5x)log(x)+2log(x)log(3exlog2(x)))x2+2(5x)log(x)+2log(x)log(3exlog2(x)))xlog(3exlog2(x))dx4exp(exp(2(5x)log(x)+2log(x)log(3exlog2(x)))x2+2(5x)log(x)+2log(x)log(3exlog2(x)))xdx

________________________________________________________________________________________

Mathematica [A]  time = 1.01, size = 21, normalized size = 1.00 ex82x+2log(3exlog2(x))

Antiderivative was successfully verified.

[In]

Integrate[E^(E^(2*(-5 - x)*Log[x] + 2*Log[x]*Log[3*E^x*Log[x]^2])*x^2 + 2*(-5 - x)*Log[x] + 2*Log[x]*Log[3*E^x
*Log[x]^2])*(-4*x - 2*x^2 + 2*x*Log[3*E^x*Log[x]^2]),x]

[Out]

E^x^(-8 - 2*x + 2*Log[3*E^x*Log[x]^2])

________________________________________________________________________________________

fricas [A]  time = 0.89, size = 27, normalized size = 1.29 e(x2e(2(x+5)log(x)+2log(3exlog(x)2)log(x)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x*log(3*exp(x)*log(x)^2)-2*x^2-4*x)*exp(log(x)*log(3*exp(x)*log(x)^2)+(-x-5)*log(x))^2*exp(x^2*ex
p(log(x)*log(3*exp(x)*log(x)^2)+(-x-5)*log(x))^2),x, algorithm="fricas")

[Out]

e^(x^2*e^(-2*(x + 5)*log(x) + 2*log(3*e^x*log(x)^2)*log(x)))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 undef

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x*log(3*exp(x)*log(x)^2)-2*x^2-4*x)*exp(log(x)*log(3*exp(x)*log(x)^2)+(-x-5)*log(x))^2*exp(x^2*ex
p(log(x)*log(3*exp(x)*log(x)^2)+(-x-5)*log(x))^2),x, algorithm="giac")

[Out]

undef

________________________________________________________________________________________

maple [C]  time = 0.36, size = 104, normalized size = 4.95




method result size



risch ex2xicsgn(iln(x)2)π+2iπcsgn(iln(x))iπcsgn(iln(x)2)csgn(iexln(x)2)csgn(iex)icsgn(iexln(x)2)π+4ln(ln(x))+2ln(3ex)+iπcsgn(iex)x2x10 104



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x*ln(3*exp(x)*ln(x)^2)-2*x^2-4*x)*exp(ln(x)*ln(3*exp(x)*ln(x)^2)+(-x-5)*ln(x))^2*exp(x^2*exp(ln(x)*ln(3
*exp(x)*ln(x)^2)+(-x-5)*ln(x))^2),x,method=_RETURNVERBOSE)

[Out]

exp(x^2*(x^(-1/2*I*csgn(I*ln(x)^2)*Pi+I*Pi*csgn(I*ln(x))-1/2*I*Pi*csgn(I*ln(x)^2)*csgn(I*exp(x)*ln(x)^2)*csgn(
I*exp(x))-1/2*I*csgn(I*exp(x)*ln(x)^2)*Pi+1/2*I*Pi*csgn(I*exp(x))+2*ln(ln(x))+ln(exp(x))+ln(3)))^2*(x^(-x-5))^
2)

________________________________________________________________________________________

maxima [A]  time = 1.13, size = 20, normalized size = 0.95 e(e(2log(3)log(x)+4log(x)log(log(x)))x8)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x*log(3*exp(x)*log(x)^2)-2*x^2-4*x)*exp(log(x)*log(3*exp(x)*log(x)^2)+(-x-5)*log(x))^2*exp(x^2*ex
p(log(x)*log(3*exp(x)*log(x)^2)+(-x-5)*log(x))^2),x, algorithm="maxima")

[Out]

e^(e^(2*log(3)*log(x) + 4*log(x)*log(log(x)))/x^8)

________________________________________________________________________________________

mupad [B]  time = 1.23, size = 20, normalized size = 0.95 ex2ln(3)x2ln(ln(x)2)x8

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-exp(2*log(x)*log(3*exp(x)*log(x)^2) - 2*log(x)*(x + 5))*exp(x^2*exp(2*log(x)*log(3*exp(x)*log(x)^2) - 2*l
og(x)*(x + 5)))*(4*x - 2*x*log(3*exp(x)*log(x)^2) + 2*x^2),x)

[Out]

exp((x^(2*log(3))*x^(2*log(log(x)^2)))/x^8)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x*ln(3*exp(x)*ln(x)**2)-2*x**2-4*x)*exp(ln(x)*ln(3*exp(x)*ln(x)**2)+(-x-5)*ln(x))**2*exp(x**2*exp
(ln(x)*ln(3*exp(x)*ln(x)**2)+(-x-5)*ln(x))**2),x)

[Out]

Timed out

________________________________________________________________________________________