3.17.88
Optimal. Leaf size=24
________________________________________________________________________________________
Rubi [B] time = 1.34, antiderivative size = 154, normalized size of antiderivative = 6.42,
number of steps used = 93, number of rules used = 5, integrand size = 147, = 0.034, Rules used
= {12, 14, 2196, 2176, 2194}
Antiderivative was successfully verified.
[In]
Int[(x^6*(E^(4*x)*(8*x + 4*x^2) + (16*E^(6 + 3*x)*(24*x + 40*x^2 + 12*x^3))/x^2 + (256*E^(12 + 2*x)*(24*x + 72
*x^2 + 60*x^3 + 12*x^4))/x^4 + (65536*E^24*(1 + 4*x^2 + 12*x^3 + 12*x^4 + 4*x^5))/x^8 + (4096*E^(18 + x)*(8*x
+ 40*x^2 + 60*x^3 + 32*x^4 + 4*x^5))/x^6))/(65536*E^24),x]
[Out]
-x^(-1) + 4*x + 6*x^2 + (E^(-6 + x)*x^2)/4 + 4*x^3 + (3*E^(-6 + x)*x^3)/4 + x^4 + (3*E^(-6 + x)*x^4)/4 + (3*E^
(-12 + 2*x)*x^4)/128 + (E^(-6 + x)*x^5)/4 + (3*E^(-12 + 2*x)*x^5)/64 + (3*E^(-12 + 2*x)*x^6)/128 + (E^(-18 + 3
*x)*x^6)/1024 + (E^(-18 + 3*x)*x^7)/1024 + (E^(-24 + 4*x)*x^8)/65536
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 2176
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2196
Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] && !$UseGamma === True
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.30, size = 89, normalized size = 3.71
Antiderivative was successfully verified.
[In]
Integrate[(x^6*(E^(4*x)*(8*x + 4*x^2) + (16*E^(6 + 3*x)*(24*x + 40*x^2 + 12*x^3))/x^2 + (256*E^(12 + 2*x)*(24*
x + 72*x^2 + 60*x^3 + 12*x^4))/x^4 + (65536*E^24*(1 + 4*x^2 + 12*x^3 + 12*x^4 + 4*x^5))/x^8 + (4096*E^(18 + x)
*(8*x + 40*x^2 + 60*x^3 + 32*x^4 + 4*x^5))/x^6))/(65536*E^24),x]
[Out]
-x^(-1) + 4*x + 6*x^2 + 4*x^3 + x^4 + (E^(4*(-6 + x))*x^8)/65536 + (E^(3*(-6 + x))*x^6*(1 + x))/1024 + (3*E^(2
*(-6 + x))*x^4*(1 + x)^2)/128 + (E^(-6 + x)*x^2*(1 + x)^3)/4
________________________________________________________________________________________
fricas [B] time = 0.85, size = 132, normalized size = 5.50
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^5+12*x^4+12*x^3+4*x^2+1)*exp(log(4/x)+3)^8+(4*x^5+32*x^4+60*x^3+40*x^2+8*x)*exp(x)*exp(log(4/x
)+3)^6+(12*x^4+60*x^3+72*x^2+24*x)*exp(x)^2*exp(log(4/x)+3)^4+(12*x^3+40*x^2+24*x)*exp(x)^3*exp(log(4/x)+3)^2+
(4*x^2+8*x)*exp(x)^4)/x^2/exp(log(4/x)+3)^8,x, algorithm="fricas")
[Out]
1/18446744073709551616*(x^33*e^(4*x + 24*log(4/x) + 72) + 18446744073709551616*(x^5 + 4*x^4 + 6*x^3 + 4*x^2 -
1)*e^96 + 262144*(x^26 + x^25)*e^(3*x + 18*log(4/x) + 78) + 25769803776*(x^19 + 2*x^18 + x^17)*e^(2*x + 12*log
(4/x) + 84) + 1125899906842624*(x^12 + 3*x^11 + 3*x^10 + x^9)*e^(x + 6*log(4/x) + 90))*e^(-96)/x
________________________________________________________________________________________
giac [B] time = 0.25, size = 141, normalized size = 5.88
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^5+12*x^4+12*x^3+4*x^2+1)*exp(log(4/x)+3)^8+(4*x^5+32*x^4+60*x^3+40*x^2+8*x)*exp(x)*exp(log(4/x
)+3)^6+(12*x^4+60*x^3+72*x^2+24*x)*exp(x)^2*exp(log(4/x)+3)^4+(12*x^3+40*x^2+24*x)*exp(x)^3*exp(log(4/x)+3)^2+
(4*x^2+8*x)*exp(x)^4)/x^2/exp(log(4/x)+3)^8,x, algorithm="giac")
[Out]
1/65536*(x^9*e^(4*x + 36) + 64*x^8*e^(3*x + 42) + 64*x^7*e^(3*x + 42) + 1536*x^7*e^(2*x + 48) + 3072*x^6*e^(2*
x + 48) + 16384*x^6*e^(x + 54) + 65536*x^5*e^60 + 1536*x^5*e^(2*x + 48) + 49152*x^5*e^(x + 54) + 262144*x^4*e^
60 + 49152*x^4*e^(x + 54) + 393216*x^3*e^60 + 16384*x^3*e^(x + 54) + 262144*x^2*e^60 - 65536*e^60)*e^(-60)/x
________________________________________________________________________________________
maple [B] time = 0.13, size = 89, normalized size = 3.71
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((4*x^5+12*x^4+12*x^3+4*x^2+1)*exp(ln(4/x)+3)^8+(4*x^5+32*x^4+60*x^3+40*x^2+8*x)*exp(x)*exp(ln(4/x)+3)^6+(
12*x^4+60*x^3+72*x^2+24*x)*exp(x)^2*exp(ln(4/x)+3)^4+(12*x^3+40*x^2+24*x)*exp(x)^3*exp(ln(4/x)+3)^2+(4*x^2+8*x
)*exp(x)^4)/x^2/exp(ln(4/x)+3)^8,x,method=_RETURNVERBOSE)
[Out]
x^4+4*x^3+6*x^2+4*x-1/x+1/4*x^2*(x^3+3*x^2+3*x+1)*exp(x-6)+3/128*x^4*(x^2+2*x+1)*exp(2*x-12)+1/1024*x^6*(x+1)*
exp(3*x-18)+1/65536*x^8*exp(4*x-24)
________________________________________________________________________________________
maxima [B] time = 0.38, size = 575, normalized size = 23.96
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^5+12*x^4+12*x^3+4*x^2+1)*exp(log(4/x)+3)^8+(4*x^5+32*x^4+60*x^3+40*x^2+8*x)*exp(x)*exp(log(4/x
)+3)^6+(12*x^4+60*x^3+72*x^2+24*x)*exp(x)^2*exp(log(4/x)+3)^4+(12*x^3+40*x^2+24*x)*exp(x)^3*exp(log(4/x)+3)^2+
(4*x^2+8*x)*exp(x)^4)/x^2/exp(log(4/x)+3)^8,x, algorithm="maxima")
[Out]
1/8153726976*(8153726976*x^4*e^24 + 32614907904*x^3*e^24 + 48922361856*x^2*e^24 + 32614907904*x*e^24 + 243*(51
2*x^8 - 1024*x^7 + 1792*x^6 - 2688*x^5 + 3360*x^4 - 3360*x^3 + 2520*x^2 - 1260*x + 315)*e^(4*x) + 243*(1024*x^
7 - 1792*x^6 + 2688*x^5 - 3360*x^4 + 3360*x^3 - 2520*x^2 + 1260*x - 315)*e^(4*x) + 32768*(243*x^7*e^6 - 567*x^
6*e^6 + 1134*x^5*e^6 - 1890*x^4*e^6 + 2520*x^3*e^6 - 2520*x^2*e^6 + 1680*x*e^6 - 560*e^6)*e^(3*x) + 327680*(81
*x^6*e^6 - 162*x^5*e^6 + 270*x^4*e^6 - 360*x^3*e^6 + 360*x^2*e^6 - 240*x*e^6 + 80*e^6)*e^(3*x) + 196608*(81*x^
5*e^6 - 135*x^4*e^6 + 180*x^3*e^6 - 180*x^2*e^6 + 120*x*e^6 - 40*e^6)*e^(3*x) + 47775744*(4*x^6*e^12 - 12*x^5*
e^12 + 30*x^4*e^12 - 60*x^3*e^12 + 90*x^2*e^12 - 90*x*e^12 + 45*e^12)*e^(2*x) + 238878720*(4*x^5*e^12 - 10*x^4
*e^12 + 20*x^3*e^12 - 30*x^2*e^12 + 30*x*e^12 - 15*e^12)*e^(2*x) + 573308928*(2*x^4*e^12 - 4*x^3*e^12 + 6*x^2*
e^12 - 6*x*e^12 + 3*e^12)*e^(2*x) + 95551488*(4*x^3*e^12 - 6*x^2*e^12 + 6*x*e^12 - 3*e^12)*e^(2*x) + 203843174
4*(x^5*e^18 - 5*x^4*e^18 + 20*x^3*e^18 - 60*x^2*e^18 + 120*x*e^18 - 120*e^18)*e^x + 16307453952*(x^4*e^18 - 4*
x^3*e^18 + 12*x^2*e^18 - 24*x*e^18 + 24*e^18)*e^x + 30576476160*(x^3*e^18 - 3*x^2*e^18 + 6*x*e^18 - 6*e^18)*e^
x + 20384317440*(x^2*e^18 - 2*x*e^18 + 2*e^18)*e^x + 4076863488*(x*e^18 - e^18)*e^x - 8153726976*e^24/x)*e^(-2
4)
________________________________________________________________________________________
mupad [B] time = 1.35, size = 124, normalized size = 5.17
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(- 8*log(4/x) - 24)*(exp(4*x)*(8*x + 4*x^2) + exp(8*log(4/x) + 24)*(4*x^2 + 12*x^3 + 12*x^4 + 4*x^5 +
1) + exp(3*x)*exp(2*log(4/x) + 6)*(24*x + 40*x^2 + 12*x^3) + exp(6*log(4/x) + 18)*exp(x)*(8*x + 40*x^2 + 60*x^
3 + 32*x^4 + 4*x^5) + exp(2*x)*exp(4*log(4/x) + 12)*(24*x + 72*x^2 + 60*x^3 + 12*x^4)))/x^2,x)
[Out]
4*x + (x^2*exp(x - 6))/4 + (3*x^3*exp(x - 6))/4 + (3*x^4*exp(x - 6))/4 + (x^5*exp(x - 6))/4 + (3*x^4*exp(2*x -
12))/128 + (3*x^5*exp(2*x - 12))/64 + (3*x^6*exp(2*x - 12))/128 + (x^6*exp(3*x - 18))/1024 + (x^7*exp(3*x - 1
8))/1024 + (x^8*exp(4*x - 24))/65536 - 1/x + 6*x^2 + 4*x^3 + x^4
________________________________________________________________________________________
sympy [B] time = 0.37, size = 128, normalized size = 5.33
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x**5+12*x**4+12*x**3+4*x**2+1)*exp(ln(4/x)+3)**8+(4*x**5+32*x**4+60*x**3+40*x**2+8*x)*exp(x)*exp
(ln(4/x)+3)**6+(12*x**4+60*x**3+72*x**2+24*x)*exp(x)**2*exp(ln(4/x)+3)**4+(12*x**3+40*x**2+24*x)*exp(x)**3*exp
(ln(4/x)+3)**2+(4*x**2+8*x)*exp(x)**4)/x**2/exp(ln(4/x)+3)**8,x)
[Out]
x**4 + 4*x**3 + 6*x**2 + 4*x + (524288*x**8*exp(36)*exp(4*x) + (33554432*x**7*exp(42) + 33554432*x**6*exp(42))
*exp(3*x) + (805306368*x**6*exp(48) + 1610612736*x**5*exp(48) + 805306368*x**4*exp(48))*exp(2*x) + (8589934592
*x**5*exp(54) + 25769803776*x**4*exp(54) + 25769803776*x**3*exp(54) + 8589934592*x**2*exp(54))*exp(x))*exp(-60
)/34359738368 - 1/x
________________________________________________________________________________________