3.17.88 x6(e4x(8x+4x2)+16e6+3x(24x+40x2+12x3)x2+256e12+2x(24x+72x2+60x3+12x4)x4+65536e24(1+4x2+12x3+12x4+4x5)x8+4096e18+x(8x+40x2+60x3+32x4+4x5)x6)65536e24dx

Optimal. Leaf size=24 31x+(1+x+116e6+xx2)4

________________________________________________________________________________________

Rubi [B]  time = 1.34, antiderivative size = 154, normalized size of antiderivative = 6.42, number of steps used = 93, number of rules used = 5, integrand size = 147, number of rulesintegrand size = 0.034, Rules used = {12, 14, 2196, 2176, 2194} e4x24x865536+e3x18x71024+3128e2x12x6+e3x18x61024+14ex6x5+364e2x12x5+34ex6x4+3128e2x12x4+x4+34ex6x3+4x3+14ex6x2+6x2+4x1x

Antiderivative was successfully verified.

[In]

Int[(x^6*(E^(4*x)*(8*x + 4*x^2) + (16*E^(6 + 3*x)*(24*x + 40*x^2 + 12*x^3))/x^2 + (256*E^(12 + 2*x)*(24*x + 72
*x^2 + 60*x^3 + 12*x^4))/x^4 + (65536*E^24*(1 + 4*x^2 + 12*x^3 + 12*x^4 + 4*x^5))/x^8 + (4096*E^(18 + x)*(8*x
+ 40*x^2 + 60*x^3 + 32*x^4 + 4*x^5))/x^6))/(65536*E^24),x]

[Out]

-x^(-1) + 4*x + 6*x^2 + (E^(-6 + x)*x^2)/4 + 4*x^3 + (3*E^(-6 + x)*x^3)/4 + x^4 + (3*E^(-6 + x)*x^4)/4 + (3*E^
(-12 + 2*x)*x^4)/128 + (E^(-6 + x)*x^5)/4 + (3*E^(-12 + 2*x)*x^5)/64 + (3*E^(-12 + 2*x)*x^6)/128 + (E^(-18 + 3
*x)*x^6)/1024 + (E^(-18 + 3*x)*x^7)/1024 + (E^(-24 + 4*x)*x^8)/65536

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2196

Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] &&  !$UseGamma === True

Rubi steps

integral=x6(e4x(8x+4x2)+16e6+3x(24x+40x2+12x3)x2+256e12+2x(24x+72x2+60x3+12x4)x4+65536e24(1+4x2+12x3+12x4+4x5)x8+4096e18+x(8x+40x2+60x3+32x4+4x5)x6)dx65536e24=(4e4xx7(2+x)+3072e12+2xx3(1+x)(2+4x+x2)+16384e18+xx(1+x)2(2+6x+x2)+64e6+3xx5(6+10x+3x2)+65536e24(1+4x2+12x3+12x4+4x5)x2)dx65536e24=e4xx7(2+x)dx16384e24+e6+3xx5(6+10x+3x2)dx1024e24+3e12+2xx3(1+x)(2+4x+x2)dx64e24+e18+xx(1+x)2(2+6x+x2)dx4e24+1+4x2+12x3+12x4+4x5x2dx=(2e4xx7+e4xx8)dx16384e24+(6e6+3xx5+10e6+3xx6+3e6+3xx7)dx1024e24+3(2e12+2xx3+6e12+2xx4+5e12+2xx5+e12+2xx6)dx64e24+(2e18+xx+10e18+xx2+15e18+xx3+8e18+xx4+e18+xx5)dx4e24+(4+1x2+12x+12x2+4x3)dx=1x+4x+6x2+4x3+x4+e4xx8dx16384e24+e4xx7dx8192e24+3e6+3xx7dx1024e24+3e6+3xx5dx512e24+5e6+3xx6dx512e24+3e12+2xx6dx64e24+3e12+2xx3dx32e24+15e12+2xx5dx64e24+e18+xx5dx4e24+9e12+2xx4dx32e24+e18+xxdx2e24+2e18+xx4dxe24+5e18+xx2dx2e24+15e18+xx3dx4e24=1x+4x+12e6+xx+6x2+52e6+xx2+4x3+154e6+xx3+364e12+2xx3+x4+2e6+xx4+964e12+2xx4+14e6+xx5+15128e12+2xx5+1512e18+3xx5+3128e12+2xx6+5e18+3xx61536+e18+3xx71024+e24+4xx732768+e24+4xx865536e4xx7dx8192e247e4xx6dx32768e247e6+3xx6dx1024e245e6+3xx4dx512e245e6+3xx5dx256e249e12+2xx2dx64e249e12+2xx5dx64e24e18+xdx2e249e12+2xx3dx16e2475e12+2xx4dx128e245e18+xx4dx4e245e18+xxdxe248e18+xx3dxe2445e18+xx2dx4e24=12e6+x1x+4x92e6+xx+6x2354e6+xx29128e12+2xx2+4x3174e6+xx31564e12+2xx3+x4+34e6+xx439256e12+2xx45e18+3xx41536+14e6+xx5+364e12+2xx57e18+3xx51536+3128e12+2xx6+e18+3xx610247e24+4xx6131072+e18+3xx71024+e24+4xx865536+7e4xx6dx32768e24+21e4xx5dx65536e24+5e6+3xx3dx384e24+7e6+3xx5dx512e24+25e6+3xx4dx768e24+9e12+2xxdx64e24+45e12+2xx4dx128e24+27e12+2xx2dx32e24+75e12+2xx3dx64e24+5e18+xdxe24+5e18+xx3dxe24+45e18+xxdx2e24+24e18+xx2dxe24=9e6+x21x+4x+18e6+xx+9128e12+2xx+6x2+614e6+xx2+45128e12+2xx2+4x3+34e6+xx3+45128e12+2xx3+5e18+3xx31152+x4+34e6+xx4+3128e12+2xx4+35e18+3xx44608+14e6+xx5+364e12+2xx5+21e24+4xx5262144+3128e12+2xx6+e18+3xx61024+e18+3xx71024+e24+4xx86553621e4xx5dx65536e24105e4xx4dx262144e245e6+3xx2dx384e2435e6+3xx4dx1536e2425e6+3xx3dx576e249e12+2xdx128e2445e12+2xx3dx64e2427e12+2xxdx32e24225e12+2xx2dx128e2415e18+xx2dxe2445e18+xdx2e2448e18+xxdxe24=18e6+x9256e12+2x1x+4x30e6+xx45128e12+2xx+6x2+14e6+xx2135256e12+2xx25e18+3xx21152+4x3+34e6+xx335e18+3xx33456+x4+34e6+xx4+3128e12+2xx4105e24+4xx41048576+14e6+xx5+364e12+2xx5+3128e12+2xx6+e18+3xx61024+e18+3xx71024+e24+4xx865536+105e4xx3dx262144e24+105e4xx4dx262144e24+5e6+3xxdx576e24+35e6+3xx3dx1152e24+25e6+3xx2dx576e24+27e12+2xdx64e24+135e12+2xx2dx128e24+225e12+2xxdx128e24+30e18+xxdxe24+48e18+xdxe24=30e6+x+45256e12+2x1x+4x+135256e12+2xx+5e18+3xx1728+6x2+14e6+xx2+35e18+3xx23456+4x3+34e6+xx3+105e24+4xx31048576+x4+34e6+xx4+3128e12+2xx4+14e6+xx5+364e12+2xx5+3128e12+2xx6+e18+3xx61024+e18+3xx71024+e24+4xx865536315e4xx2dx1048576e24105e4xx3dx262144e245e6+3xdx1728e2425e6+3xxdx864e2435e6+3xx2dx1152e24225e12+2xdx256e24135e12+2xxdx128e2430e18+xdxe24=135512e12+2x5e18+3x51841x+4x35e18+3xx5184+6x2+14e6+xx2315e24+4xx24194304+4x3+34e6+xx3+x4+34e6+xx4+3128e12+2xx4+14e6+xx5+364e12+2xx5+3128e12+2xx6+e18+3xx61024+e18+3xx71024+e24+4xx865536+315e4xxdx2097152e24+315e4xx2dx1048576e24+25e6+3xdx2592e24+35e6+3xxdx1728e24+135e12+2xdx256e24=35e18+3x155521x+4x+315e24+4xx8388608+6x2+14e6+xx2+4x3+34e6+xx3+x4+34e6+xx4+3128e12+2xx4+14e6+xx5+364e12+2xx5+3128e12+2xx6+e18+3xx61024+e18+3xx71024+e24+4xx865536315e4xdx8388608e24315e4xxdx2097152e2435e6+3xdx5184e24=315e24+4x335544321x+4x+6x2+14e6+xx2+4x3+34e6+xx3+x4+34e6+xx4+3128e12+2xx4+14e6+xx5+364e12+2xx5+3128e12+2xx6+e18+3xx61024+e18+3xx71024+e24+4xx865536+315e4xdx8388608e24=1x+4x+6x2+14e6+xx2+4x3+34e6+xx3+x4+34e6+xx4+3128e12+2xx4+14e6+xx5+364e12+2xx5+3128e12+2xx6+e18+3xx61024+e18+3xx71024+e24+4xx865536

________________________________________________________________________________________

Mathematica [B]  time = 0.30, size = 89, normalized size = 3.71 1x+4x+6x2+4x3+x4+e4(6+x)x865536+e3(6+x)x6(1+x)1024+3128e2(6+x)x4(1+x)2+14e6+xx2(1+x)3

Antiderivative was successfully verified.

[In]

Integrate[(x^6*(E^(4*x)*(8*x + 4*x^2) + (16*E^(6 + 3*x)*(24*x + 40*x^2 + 12*x^3))/x^2 + (256*E^(12 + 2*x)*(24*
x + 72*x^2 + 60*x^3 + 12*x^4))/x^4 + (65536*E^24*(1 + 4*x^2 + 12*x^3 + 12*x^4 + 4*x^5))/x^8 + (4096*E^(18 + x)
*(8*x + 40*x^2 + 60*x^3 + 32*x^4 + 4*x^5))/x^6))/(65536*E^24),x]

[Out]

-x^(-1) + 4*x + 6*x^2 + 4*x^3 + x^4 + (E^(4*(-6 + x))*x^8)/65536 + (E^(3*(-6 + x))*x^6*(1 + x))/1024 + (3*E^(2
*(-6 + x))*x^4*(1 + x)^2)/128 + (E^(-6 + x)*x^2*(1 + x)^3)/4

________________________________________________________________________________________

fricas [B]  time = 0.85, size = 132, normalized size = 5.50 (x33e(4x+24log(4x)+72)+18446744073709551616(x5+4x4+6x3+4x21)e96+262144(x26+x25)e(3x+18log(4x)+78)+25769803776(x19+2x18+x17)e(2x+12log(4x)+84)+1125899906842624(x12+3x11+3x10+x9)e(x+6log(4x)+90))e(96)18446744073709551616x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x^5+12*x^4+12*x^3+4*x^2+1)*exp(log(4/x)+3)^8+(4*x^5+32*x^4+60*x^3+40*x^2+8*x)*exp(x)*exp(log(4/x
)+3)^6+(12*x^4+60*x^3+72*x^2+24*x)*exp(x)^2*exp(log(4/x)+3)^4+(12*x^3+40*x^2+24*x)*exp(x)^3*exp(log(4/x)+3)^2+
(4*x^2+8*x)*exp(x)^4)/x^2/exp(log(4/x)+3)^8,x, algorithm="fricas")

[Out]

1/18446744073709551616*(x^33*e^(4*x + 24*log(4/x) + 72) + 18446744073709551616*(x^5 + 4*x^4 + 6*x^3 + 4*x^2 -
1)*e^96 + 262144*(x^26 + x^25)*e^(3*x + 18*log(4/x) + 78) + 25769803776*(x^19 + 2*x^18 + x^17)*e^(2*x + 12*log
(4/x) + 84) + 1125899906842624*(x^12 + 3*x^11 + 3*x^10 + x^9)*e^(x + 6*log(4/x) + 90))*e^(-96)/x

________________________________________________________________________________________

giac [B]  time = 0.25, size = 141, normalized size = 5.88 (x9e(4x+36)+64x8e(3x+42)+64x7e(3x+42)+1536x7e(2x+48)+3072x6e(2x+48)+16384x6e(x+54)+65536x5e60+1536x5e(2x+48)+49152x5e(x+54)+262144x4e60+49152x4e(x+54)+393216x3e60+16384x3e(x+54)+262144x2e6065536e60)e(60)65536x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x^5+12*x^4+12*x^3+4*x^2+1)*exp(log(4/x)+3)^8+(4*x^5+32*x^4+60*x^3+40*x^2+8*x)*exp(x)*exp(log(4/x
)+3)^6+(12*x^4+60*x^3+72*x^2+24*x)*exp(x)^2*exp(log(4/x)+3)^4+(12*x^3+40*x^2+24*x)*exp(x)^3*exp(log(4/x)+3)^2+
(4*x^2+8*x)*exp(x)^4)/x^2/exp(log(4/x)+3)^8,x, algorithm="giac")

[Out]

1/65536*(x^9*e^(4*x + 36) + 64*x^8*e^(3*x + 42) + 64*x^7*e^(3*x + 42) + 1536*x^7*e^(2*x + 48) + 3072*x^6*e^(2*
x + 48) + 16384*x^6*e^(x + 54) + 65536*x^5*e^60 + 1536*x^5*e^(2*x + 48) + 49152*x^5*e^(x + 54) + 262144*x^4*e^
60 + 49152*x^4*e^(x + 54) + 393216*x^3*e^60 + 16384*x^3*e^(x + 54) + 262144*x^2*e^60 - 65536*e^60)*e^(-60)/x

________________________________________________________________________________________

maple [B]  time = 0.13, size = 89, normalized size = 3.71




method result size



risch x4+4x3+6x2+4x1x+x2(x3+3x2+3x+1)ex64+3x4(x2+2x+1)e2x12128+x6(x+1)e3x181024+x8e4x2465536 89
default Expression too large to display 11630



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((4*x^5+12*x^4+12*x^3+4*x^2+1)*exp(ln(4/x)+3)^8+(4*x^5+32*x^4+60*x^3+40*x^2+8*x)*exp(x)*exp(ln(4/x)+3)^6+(
12*x^4+60*x^3+72*x^2+24*x)*exp(x)^2*exp(ln(4/x)+3)^4+(12*x^3+40*x^2+24*x)*exp(x)^3*exp(ln(4/x)+3)^2+(4*x^2+8*x
)*exp(x)^4)/x^2/exp(ln(4/x)+3)^8,x,method=_RETURNVERBOSE)

[Out]

x^4+4*x^3+6*x^2+4*x-1/x+1/4*x^2*(x^3+3*x^2+3*x+1)*exp(x-6)+3/128*x^4*(x^2+2*x+1)*exp(2*x-12)+1/1024*x^6*(x+1)*
exp(3*x-18)+1/65536*x^8*exp(4*x-24)

________________________________________________________________________________________

maxima [B]  time = 0.38, size = 575, normalized size = 23.96 18153726976(8153726976x4e24+32614907904x3e24+48922361856x2e24+32614907904xe24+243(512x81024x7+1792x62688x5+3360x43360x3+2520x21260x+315)e(4x)+243(1024x71792x6+2688x53360x4+3360x32520x2+1260x315)e(4x)+32768(243x7e6567x6e6+1134x5e61890x4e6+2520x3e62520x2e6+1680xe6560e6)e(3x)+327680(81x6e6162x5e6+270x4e6360x3e6+360x2e6240xe6+80e6)e(3x)+196608(81x5e6135x4e6+180x3e6180x2e6+120xe640e6)e(3x)+47775744(4x6e1212x5e12+30x4e1260x3e12+90x2e1290xe12+45e12)e(2x)+238878720(4x5e1210x4e12+20x3e1230x2e12+30xe1215e12)e(2x)+573308928(2x4e124x3e12+6x2e126xe12+3e12)e(2x)+95551488(4x3e126x2e12+6xe123e12)e(2x)+2038431744(x5e185x4e18+20x3e1860x2e18+120xe18120e18)ex+16307453952(x4e184x3e18+12x2e1824xe18+24e18)ex+30576476160(x3e183x2e18+6xe186e18)ex+20384317440(x2e182xe18+2e18)ex+4076863488(xe18e18)ex8153726976e24x)e(24)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x^5+12*x^4+12*x^3+4*x^2+1)*exp(log(4/x)+3)^8+(4*x^5+32*x^4+60*x^3+40*x^2+8*x)*exp(x)*exp(log(4/x
)+3)^6+(12*x^4+60*x^3+72*x^2+24*x)*exp(x)^2*exp(log(4/x)+3)^4+(12*x^3+40*x^2+24*x)*exp(x)^3*exp(log(4/x)+3)^2+
(4*x^2+8*x)*exp(x)^4)/x^2/exp(log(4/x)+3)^8,x, algorithm="maxima")

[Out]

1/8153726976*(8153726976*x^4*e^24 + 32614907904*x^3*e^24 + 48922361856*x^2*e^24 + 32614907904*x*e^24 + 243*(51
2*x^8 - 1024*x^7 + 1792*x^6 - 2688*x^5 + 3360*x^4 - 3360*x^3 + 2520*x^2 - 1260*x + 315)*e^(4*x) + 243*(1024*x^
7 - 1792*x^6 + 2688*x^5 - 3360*x^4 + 3360*x^3 - 2520*x^2 + 1260*x - 315)*e^(4*x) + 32768*(243*x^7*e^6 - 567*x^
6*e^6 + 1134*x^5*e^6 - 1890*x^4*e^6 + 2520*x^3*e^6 - 2520*x^2*e^6 + 1680*x*e^6 - 560*e^6)*e^(3*x) + 327680*(81
*x^6*e^6 - 162*x^5*e^6 + 270*x^4*e^6 - 360*x^3*e^6 + 360*x^2*e^6 - 240*x*e^6 + 80*e^6)*e^(3*x) + 196608*(81*x^
5*e^6 - 135*x^4*e^6 + 180*x^3*e^6 - 180*x^2*e^6 + 120*x*e^6 - 40*e^6)*e^(3*x) + 47775744*(4*x^6*e^12 - 12*x^5*
e^12 + 30*x^4*e^12 - 60*x^3*e^12 + 90*x^2*e^12 - 90*x*e^12 + 45*e^12)*e^(2*x) + 238878720*(4*x^5*e^12 - 10*x^4
*e^12 + 20*x^3*e^12 - 30*x^2*e^12 + 30*x*e^12 - 15*e^12)*e^(2*x) + 573308928*(2*x^4*e^12 - 4*x^3*e^12 + 6*x^2*
e^12 - 6*x*e^12 + 3*e^12)*e^(2*x) + 95551488*(4*x^3*e^12 - 6*x^2*e^12 + 6*x*e^12 - 3*e^12)*e^(2*x) + 203843174
4*(x^5*e^18 - 5*x^4*e^18 + 20*x^3*e^18 - 60*x^2*e^18 + 120*x*e^18 - 120*e^18)*e^x + 16307453952*(x^4*e^18 - 4*
x^3*e^18 + 12*x^2*e^18 - 24*x*e^18 + 24*e^18)*e^x + 30576476160*(x^3*e^18 - 3*x^2*e^18 + 6*x*e^18 - 6*e^18)*e^
x + 20384317440*(x^2*e^18 - 2*x*e^18 + 2*e^18)*e^x + 4076863488*(x*e^18 - e^18)*e^x - 8153726976*e^24/x)*e^(-2
4)

________________________________________________________________________________________

mupad [B]  time = 1.35, size = 124, normalized size = 5.17 4x+x2ex64+3x3ex64+3x4ex64+x5ex64+3x4e2x12128+3x5e2x1264+3x6e2x12128+x6e3x181024+x7e3x181024+x8e4x24655361x+6x2+4x3+x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(- 8*log(4/x) - 24)*(exp(4*x)*(8*x + 4*x^2) + exp(8*log(4/x) + 24)*(4*x^2 + 12*x^3 + 12*x^4 + 4*x^5 +
1) + exp(3*x)*exp(2*log(4/x) + 6)*(24*x + 40*x^2 + 12*x^3) + exp(6*log(4/x) + 18)*exp(x)*(8*x + 40*x^2 + 60*x^
3 + 32*x^4 + 4*x^5) + exp(2*x)*exp(4*log(4/x) + 12)*(24*x + 72*x^2 + 60*x^3 + 12*x^4)))/x^2,x)

[Out]

4*x + (x^2*exp(x - 6))/4 + (3*x^3*exp(x - 6))/4 + (3*x^4*exp(x - 6))/4 + (x^5*exp(x - 6))/4 + (3*x^4*exp(2*x -
 12))/128 + (3*x^5*exp(2*x - 12))/64 + (3*x^6*exp(2*x - 12))/128 + (x^6*exp(3*x - 18))/1024 + (x^7*exp(3*x - 1
8))/1024 + (x^8*exp(4*x - 24))/65536 - 1/x + 6*x^2 + 4*x^3 + x^4

________________________________________________________________________________________

sympy [B]  time = 0.37, size = 128, normalized size = 5.33 x4+4x3+6x2+4x+524288x8e36e4x+(33554432x7e42+33554432x6e42)e3x+(805306368x6e48+1610612736x5e48+805306368x4e48)e2x+(8589934592x5e54+25769803776x4e54+25769803776x3e54+8589934592x2e54)ex34359738368e601x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((4*x**5+12*x**4+12*x**3+4*x**2+1)*exp(ln(4/x)+3)**8+(4*x**5+32*x**4+60*x**3+40*x**2+8*x)*exp(x)*exp
(ln(4/x)+3)**6+(12*x**4+60*x**3+72*x**2+24*x)*exp(x)**2*exp(ln(4/x)+3)**4+(12*x**3+40*x**2+24*x)*exp(x)**3*exp
(ln(4/x)+3)**2+(4*x**2+8*x)*exp(x)**4)/x**2/exp(ln(4/x)+3)**8,x)

[Out]

x**4 + 4*x**3 + 6*x**2 + 4*x + (524288*x**8*exp(36)*exp(4*x) + (33554432*x**7*exp(42) + 33554432*x**6*exp(42))
*exp(3*x) + (805306368*x**6*exp(48) + 1610612736*x**5*exp(48) + 805306368*x**4*exp(48))*exp(2*x) + (8589934592
*x**5*exp(54) + 25769803776*x**4*exp(54) + 25769803776*x**3*exp(54) + 8589934592*x**2*exp(54))*exp(x))*exp(-60
)/34359738368 - 1/x

________________________________________________________________________________________