Optimal. Leaf size=24 \[ 3-\frac {1}{x}+\left (1+x+\frac {1}{16} e^{-6+x} x^2\right )^4 \]
________________________________________________________________________________________
Rubi [B] time = 1.34, antiderivative size = 154, normalized size of antiderivative = 6.42, number of steps used = 93, number of rules used = 5, integrand size = 147, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.034, Rules used = {12, 14, 2196, 2176, 2194} \begin {gather*} \frac {e^{4 x-24} x^8}{65536}+\frac {e^{3 x-18} x^7}{1024}+\frac {3}{128} e^{2 x-12} x^6+\frac {e^{3 x-18} x^6}{1024}+\frac {1}{4} e^{x-6} x^5+\frac {3}{64} e^{2 x-12} x^5+\frac {3}{4} e^{x-6} x^4+\frac {3}{128} e^{2 x-12} x^4+x^4+\frac {3}{4} e^{x-6} x^3+4 x^3+\frac {1}{4} e^{x-6} x^2+6 x^2+4 x-\frac {1}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int x^6 \left (e^{4 x} \left (8 x+4 x^2\right )+\frac {16 e^{6+3 x} \left (24 x+40 x^2+12 x^3\right )}{x^2}+\frac {256 e^{12+2 x} \left (24 x+72 x^2+60 x^3+12 x^4\right )}{x^4}+\frac {65536 e^{24} \left (1+4 x^2+12 x^3+12 x^4+4 x^5\right )}{x^8}+\frac {4096 e^{18+x} \left (8 x+40 x^2+60 x^3+32 x^4+4 x^5\right )}{x^6}\right ) \, dx}{65536 e^{24}}\\ &=\frac {\int \left (4 e^{4 x} x^7 (2+x)+3072 e^{12+2 x} x^3 (1+x) \left (2+4 x+x^2\right )+16384 e^{18+x} x (1+x)^2 \left (2+6 x+x^2\right )+64 e^{6+3 x} x^5 \left (6+10 x+3 x^2\right )+\frac {65536 e^{24} \left (1+4 x^2+12 x^3+12 x^4+4 x^5\right )}{x^2}\right ) \, dx}{65536 e^{24}}\\ &=\frac {\int e^{4 x} x^7 (2+x) \, dx}{16384 e^{24}}+\frac {\int e^{6+3 x} x^5 \left (6+10 x+3 x^2\right ) \, dx}{1024 e^{24}}+\frac {3 \int e^{12+2 x} x^3 (1+x) \left (2+4 x+x^2\right ) \, dx}{64 e^{24}}+\frac {\int e^{18+x} x (1+x)^2 \left (2+6 x+x^2\right ) \, dx}{4 e^{24}}+\int \frac {1+4 x^2+12 x^3+12 x^4+4 x^5}{x^2} \, dx\\ &=\frac {\int \left (2 e^{4 x} x^7+e^{4 x} x^8\right ) \, dx}{16384 e^{24}}+\frac {\int \left (6 e^{6+3 x} x^5+10 e^{6+3 x} x^6+3 e^{6+3 x} x^7\right ) \, dx}{1024 e^{24}}+\frac {3 \int \left (2 e^{12+2 x} x^3+6 e^{12+2 x} x^4+5 e^{12+2 x} x^5+e^{12+2 x} x^6\right ) \, dx}{64 e^{24}}+\frac {\int \left (2 e^{18+x} x+10 e^{18+x} x^2+15 e^{18+x} x^3+8 e^{18+x} x^4+e^{18+x} x^5\right ) \, dx}{4 e^{24}}+\int \left (4+\frac {1}{x^2}+12 x+12 x^2+4 x^3\right ) \, dx\\ &=-\frac {1}{x}+4 x+6 x^2+4 x^3+x^4+\frac {\int e^{4 x} x^8 \, dx}{16384 e^{24}}+\frac {\int e^{4 x} x^7 \, dx}{8192 e^{24}}+\frac {3 \int e^{6+3 x} x^7 \, dx}{1024 e^{24}}+\frac {3 \int e^{6+3 x} x^5 \, dx}{512 e^{24}}+\frac {5 \int e^{6+3 x} x^6 \, dx}{512 e^{24}}+\frac {3 \int e^{12+2 x} x^6 \, dx}{64 e^{24}}+\frac {3 \int e^{12+2 x} x^3 \, dx}{32 e^{24}}+\frac {15 \int e^{12+2 x} x^5 \, dx}{64 e^{24}}+\frac {\int e^{18+x} x^5 \, dx}{4 e^{24}}+\frac {9 \int e^{12+2 x} x^4 \, dx}{32 e^{24}}+\frac {\int e^{18+x} x \, dx}{2 e^{24}}+\frac {2 \int e^{18+x} x^4 \, dx}{e^{24}}+\frac {5 \int e^{18+x} x^2 \, dx}{2 e^{24}}+\frac {15 \int e^{18+x} x^3 \, dx}{4 e^{24}}\\ &=-\frac {1}{x}+4 x+\frac {1}{2} e^{-6+x} x+6 x^2+\frac {5}{2} e^{-6+x} x^2+4 x^3+\frac {15}{4} e^{-6+x} x^3+\frac {3}{64} e^{-12+2 x} x^3+x^4+2 e^{-6+x} x^4+\frac {9}{64} e^{-12+2 x} x^4+\frac {1}{4} e^{-6+x} x^5+\frac {15}{128} e^{-12+2 x} x^5+\frac {1}{512} e^{-18+3 x} x^5+\frac {3}{128} e^{-12+2 x} x^6+\frac {5 e^{-18+3 x} x^6}{1536}+\frac {e^{-18+3 x} x^7}{1024}+\frac {e^{-24+4 x} x^7}{32768}+\frac {e^{-24+4 x} x^8}{65536}-\frac {\int e^{4 x} x^7 \, dx}{8192 e^{24}}-\frac {7 \int e^{4 x} x^6 \, dx}{32768 e^{24}}-\frac {7 \int e^{6+3 x} x^6 \, dx}{1024 e^{24}}-\frac {5 \int e^{6+3 x} x^4 \, dx}{512 e^{24}}-\frac {5 \int e^{6+3 x} x^5 \, dx}{256 e^{24}}-\frac {9 \int e^{12+2 x} x^2 \, dx}{64 e^{24}}-\frac {9 \int e^{12+2 x} x^5 \, dx}{64 e^{24}}-\frac {\int e^{18+x} \, dx}{2 e^{24}}-\frac {9 \int e^{12+2 x} x^3 \, dx}{16 e^{24}}-\frac {75 \int e^{12+2 x} x^4 \, dx}{128 e^{24}}-\frac {5 \int e^{18+x} x^4 \, dx}{4 e^{24}}-\frac {5 \int e^{18+x} x \, dx}{e^{24}}-\frac {8 \int e^{18+x} x^3 \, dx}{e^{24}}-\frac {45 \int e^{18+x} x^2 \, dx}{4 e^{24}}\\ &=-\frac {1}{2} e^{-6+x}-\frac {1}{x}+4 x-\frac {9}{2} e^{-6+x} x+6 x^2-\frac {35}{4} e^{-6+x} x^2-\frac {9}{128} e^{-12+2 x} x^2+4 x^3-\frac {17}{4} e^{-6+x} x^3-\frac {15}{64} e^{-12+2 x} x^3+x^4+\frac {3}{4} e^{-6+x} x^4-\frac {39}{256} e^{-12+2 x} x^4-\frac {5 e^{-18+3 x} x^4}{1536}+\frac {1}{4} e^{-6+x} x^5+\frac {3}{64} e^{-12+2 x} x^5-\frac {7 e^{-18+3 x} x^5}{1536}+\frac {3}{128} e^{-12+2 x} x^6+\frac {e^{-18+3 x} x^6}{1024}-\frac {7 e^{-24+4 x} x^6}{131072}+\frac {e^{-18+3 x} x^7}{1024}+\frac {e^{-24+4 x} x^8}{65536}+\frac {7 \int e^{4 x} x^6 \, dx}{32768 e^{24}}+\frac {21 \int e^{4 x} x^5 \, dx}{65536 e^{24}}+\frac {5 \int e^{6+3 x} x^3 \, dx}{384 e^{24}}+\frac {7 \int e^{6+3 x} x^5 \, dx}{512 e^{24}}+\frac {25 \int e^{6+3 x} x^4 \, dx}{768 e^{24}}+\frac {9 \int e^{12+2 x} x \, dx}{64 e^{24}}+\frac {45 \int e^{12+2 x} x^4 \, dx}{128 e^{24}}+\frac {27 \int e^{12+2 x} x^2 \, dx}{32 e^{24}}+\frac {75 \int e^{12+2 x} x^3 \, dx}{64 e^{24}}+\frac {5 \int e^{18+x} \, dx}{e^{24}}+\frac {5 \int e^{18+x} x^3 \, dx}{e^{24}}+\frac {45 \int e^{18+x} x \, dx}{2 e^{24}}+\frac {24 \int e^{18+x} x^2 \, dx}{e^{24}}\\ &=\frac {9 e^{-6+x}}{2}-\frac {1}{x}+4 x+18 e^{-6+x} x+\frac {9}{128} e^{-12+2 x} x+6 x^2+\frac {61}{4} e^{-6+x} x^2+\frac {45}{128} e^{-12+2 x} x^2+4 x^3+\frac {3}{4} e^{-6+x} x^3+\frac {45}{128} e^{-12+2 x} x^3+\frac {5 e^{-18+3 x} x^3}{1152}+x^4+\frac {3}{4} e^{-6+x} x^4+\frac {3}{128} e^{-12+2 x} x^4+\frac {35 e^{-18+3 x} x^4}{4608}+\frac {1}{4} e^{-6+x} x^5+\frac {3}{64} e^{-12+2 x} x^5+\frac {21 e^{-24+4 x} x^5}{262144}+\frac {3}{128} e^{-12+2 x} x^6+\frac {e^{-18+3 x} x^6}{1024}+\frac {e^{-18+3 x} x^7}{1024}+\frac {e^{-24+4 x} x^8}{65536}-\frac {21 \int e^{4 x} x^5 \, dx}{65536 e^{24}}-\frac {105 \int e^{4 x} x^4 \, dx}{262144 e^{24}}-\frac {5 \int e^{6+3 x} x^2 \, dx}{384 e^{24}}-\frac {35 \int e^{6+3 x} x^4 \, dx}{1536 e^{24}}-\frac {25 \int e^{6+3 x} x^3 \, dx}{576 e^{24}}-\frac {9 \int e^{12+2 x} \, dx}{128 e^{24}}-\frac {45 \int e^{12+2 x} x^3 \, dx}{64 e^{24}}-\frac {27 \int e^{12+2 x} x \, dx}{32 e^{24}}-\frac {225 \int e^{12+2 x} x^2 \, dx}{128 e^{24}}-\frac {15 \int e^{18+x} x^2 \, dx}{e^{24}}-\frac {45 \int e^{18+x} \, dx}{2 e^{24}}-\frac {48 \int e^{18+x} x \, dx}{e^{24}}\\ &=-18 e^{-6+x}-\frac {9}{256} e^{-12+2 x}-\frac {1}{x}+4 x-30 e^{-6+x} x-\frac {45}{128} e^{-12+2 x} x+6 x^2+\frac {1}{4} e^{-6+x} x^2-\frac {135}{256} e^{-12+2 x} x^2-\frac {5 e^{-18+3 x} x^2}{1152}+4 x^3+\frac {3}{4} e^{-6+x} x^3-\frac {35 e^{-18+3 x} x^3}{3456}+x^4+\frac {3}{4} e^{-6+x} x^4+\frac {3}{128} e^{-12+2 x} x^4-\frac {105 e^{-24+4 x} x^4}{1048576}+\frac {1}{4} e^{-6+x} x^5+\frac {3}{64} e^{-12+2 x} x^5+\frac {3}{128} e^{-12+2 x} x^6+\frac {e^{-18+3 x} x^6}{1024}+\frac {e^{-18+3 x} x^7}{1024}+\frac {e^{-24+4 x} x^8}{65536}+\frac {105 \int e^{4 x} x^3 \, dx}{262144 e^{24}}+\frac {105 \int e^{4 x} x^4 \, dx}{262144 e^{24}}+\frac {5 \int e^{6+3 x} x \, dx}{576 e^{24}}+\frac {35 \int e^{6+3 x} x^3 \, dx}{1152 e^{24}}+\frac {25 \int e^{6+3 x} x^2 \, dx}{576 e^{24}}+\frac {27 \int e^{12+2 x} \, dx}{64 e^{24}}+\frac {135 \int e^{12+2 x} x^2 \, dx}{128 e^{24}}+\frac {225 \int e^{12+2 x} x \, dx}{128 e^{24}}+\frac {30 \int e^{18+x} x \, dx}{e^{24}}+\frac {48 \int e^{18+x} \, dx}{e^{24}}\\ &=30 e^{-6+x}+\frac {45}{256} e^{-12+2 x}-\frac {1}{x}+4 x+\frac {135}{256} e^{-12+2 x} x+\frac {5 e^{-18+3 x} x}{1728}+6 x^2+\frac {1}{4} e^{-6+x} x^2+\frac {35 e^{-18+3 x} x^2}{3456}+4 x^3+\frac {3}{4} e^{-6+x} x^3+\frac {105 e^{-24+4 x} x^3}{1048576}+x^4+\frac {3}{4} e^{-6+x} x^4+\frac {3}{128} e^{-12+2 x} x^4+\frac {1}{4} e^{-6+x} x^5+\frac {3}{64} e^{-12+2 x} x^5+\frac {3}{128} e^{-12+2 x} x^6+\frac {e^{-18+3 x} x^6}{1024}+\frac {e^{-18+3 x} x^7}{1024}+\frac {e^{-24+4 x} x^8}{65536}-\frac {315 \int e^{4 x} x^2 \, dx}{1048576 e^{24}}-\frac {105 \int e^{4 x} x^3 \, dx}{262144 e^{24}}-\frac {5 \int e^{6+3 x} \, dx}{1728 e^{24}}-\frac {25 \int e^{6+3 x} x \, dx}{864 e^{24}}-\frac {35 \int e^{6+3 x} x^2 \, dx}{1152 e^{24}}-\frac {225 \int e^{12+2 x} \, dx}{256 e^{24}}-\frac {135 \int e^{12+2 x} x \, dx}{128 e^{24}}-\frac {30 \int e^{18+x} \, dx}{e^{24}}\\ &=-\frac {135}{512} e^{-12+2 x}-\frac {5 e^{-18+3 x}}{5184}-\frac {1}{x}+4 x-\frac {35 e^{-18+3 x} x}{5184}+6 x^2+\frac {1}{4} e^{-6+x} x^2-\frac {315 e^{-24+4 x} x^2}{4194304}+4 x^3+\frac {3}{4} e^{-6+x} x^3+x^4+\frac {3}{4} e^{-6+x} x^4+\frac {3}{128} e^{-12+2 x} x^4+\frac {1}{4} e^{-6+x} x^5+\frac {3}{64} e^{-12+2 x} x^5+\frac {3}{128} e^{-12+2 x} x^6+\frac {e^{-18+3 x} x^6}{1024}+\frac {e^{-18+3 x} x^7}{1024}+\frac {e^{-24+4 x} x^8}{65536}+\frac {315 \int e^{4 x} x \, dx}{2097152 e^{24}}+\frac {315 \int e^{4 x} x^2 \, dx}{1048576 e^{24}}+\frac {25 \int e^{6+3 x} \, dx}{2592 e^{24}}+\frac {35 \int e^{6+3 x} x \, dx}{1728 e^{24}}+\frac {135 \int e^{12+2 x} \, dx}{256 e^{24}}\\ &=\frac {35 e^{-18+3 x}}{15552}-\frac {1}{x}+4 x+\frac {315 e^{-24+4 x} x}{8388608}+6 x^2+\frac {1}{4} e^{-6+x} x^2+4 x^3+\frac {3}{4} e^{-6+x} x^3+x^4+\frac {3}{4} e^{-6+x} x^4+\frac {3}{128} e^{-12+2 x} x^4+\frac {1}{4} e^{-6+x} x^5+\frac {3}{64} e^{-12+2 x} x^5+\frac {3}{128} e^{-12+2 x} x^6+\frac {e^{-18+3 x} x^6}{1024}+\frac {e^{-18+3 x} x^7}{1024}+\frac {e^{-24+4 x} x^8}{65536}-\frac {315 \int e^{4 x} \, dx}{8388608 e^{24}}-\frac {315 \int e^{4 x} x \, dx}{2097152 e^{24}}-\frac {35 \int e^{6+3 x} \, dx}{5184 e^{24}}\\ &=-\frac {315 e^{-24+4 x}}{33554432}-\frac {1}{x}+4 x+6 x^2+\frac {1}{4} e^{-6+x} x^2+4 x^3+\frac {3}{4} e^{-6+x} x^3+x^4+\frac {3}{4} e^{-6+x} x^4+\frac {3}{128} e^{-12+2 x} x^4+\frac {1}{4} e^{-6+x} x^5+\frac {3}{64} e^{-12+2 x} x^5+\frac {3}{128} e^{-12+2 x} x^6+\frac {e^{-18+3 x} x^6}{1024}+\frac {e^{-18+3 x} x^7}{1024}+\frac {e^{-24+4 x} x^8}{65536}+\frac {315 \int e^{4 x} \, dx}{8388608 e^{24}}\\ &=-\frac {1}{x}+4 x+6 x^2+\frac {1}{4} e^{-6+x} x^2+4 x^3+\frac {3}{4} e^{-6+x} x^3+x^4+\frac {3}{4} e^{-6+x} x^4+\frac {3}{128} e^{-12+2 x} x^4+\frac {1}{4} e^{-6+x} x^5+\frac {3}{64} e^{-12+2 x} x^5+\frac {3}{128} e^{-12+2 x} x^6+\frac {e^{-18+3 x} x^6}{1024}+\frac {e^{-18+3 x} x^7}{1024}+\frac {e^{-24+4 x} x^8}{65536}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.30, size = 89, normalized size = 3.71 \begin {gather*} -\frac {1}{x}+4 x+6 x^2+4 x^3+x^4+\frac {e^{4 (-6+x)} x^8}{65536}+\frac {e^{3 (-6+x)} x^6 (1+x)}{1024}+\frac {3}{128} e^{2 (-6+x)} x^4 (1+x)^2+\frac {1}{4} e^{-6+x} x^2 (1+x)^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.85, size = 132, normalized size = 5.50 \begin {gather*} \frac {{\left (x^{33} e^{\left (4 \, x + 24 \, \log \left (\frac {4}{x}\right ) + 72\right )} + 18446744073709551616 \, {\left (x^{5} + 4 \, x^{4} + 6 \, x^{3} + 4 \, x^{2} - 1\right )} e^{96} + 262144 \, {\left (x^{26} + x^{25}\right )} e^{\left (3 \, x + 18 \, \log \left (\frac {4}{x}\right ) + 78\right )} + 25769803776 \, {\left (x^{19} + 2 \, x^{18} + x^{17}\right )} e^{\left (2 \, x + 12 \, \log \left (\frac {4}{x}\right ) + 84\right )} + 1125899906842624 \, {\left (x^{12} + 3 \, x^{11} + 3 \, x^{10} + x^{9}\right )} e^{\left (x + 6 \, \log \left (\frac {4}{x}\right ) + 90\right )}\right )} e^{\left (-96\right )}}{18446744073709551616 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 141, normalized size = 5.88 \begin {gather*} \frac {{\left (x^{9} e^{\left (4 \, x + 36\right )} + 64 \, x^{8} e^{\left (3 \, x + 42\right )} + 64 \, x^{7} e^{\left (3 \, x + 42\right )} + 1536 \, x^{7} e^{\left (2 \, x + 48\right )} + 3072 \, x^{6} e^{\left (2 \, x + 48\right )} + 16384 \, x^{6} e^{\left (x + 54\right )} + 65536 \, x^{5} e^{60} + 1536 \, x^{5} e^{\left (2 \, x + 48\right )} + 49152 \, x^{5} e^{\left (x + 54\right )} + 262144 \, x^{4} e^{60} + 49152 \, x^{4} e^{\left (x + 54\right )} + 393216 \, x^{3} e^{60} + 16384 \, x^{3} e^{\left (x + 54\right )} + 262144 \, x^{2} e^{60} - 65536 \, e^{60}\right )} e^{\left (-60\right )}}{65536 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.13, size = 89, normalized size = 3.71
method | result | size |
risch | \(x^{4}+4 x^{3}+6 x^{2}+4 x -\frac {1}{x}+\frac {x^{2} \left (x^{3}+3 x^{2}+3 x +1\right ) {\mathrm e}^{x -6}}{4}+\frac {3 x^{4} \left (x^{2}+2 x +1\right ) {\mathrm e}^{2 x -12}}{128}+\frac {x^{6} \left (x +1\right ) {\mathrm e}^{3 x -18}}{1024}+\frac {x^{8} {\mathrm e}^{4 x -24}}{65536}\) | \(89\) |
default | \(\text {Expression too large to display}\) | \(11630\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 575, normalized size = 23.96 \begin {gather*} \frac {1}{8153726976} \, {\left (8153726976 \, x^{4} e^{24} + 32614907904 \, x^{3} e^{24} + 48922361856 \, x^{2} e^{24} + 32614907904 \, x e^{24} + 243 \, {\left (512 \, x^{8} - 1024 \, x^{7} + 1792 \, x^{6} - 2688 \, x^{5} + 3360 \, x^{4} - 3360 \, x^{3} + 2520 \, x^{2} - 1260 \, x + 315\right )} e^{\left (4 \, x\right )} + 243 \, {\left (1024 \, x^{7} - 1792 \, x^{6} + 2688 \, x^{5} - 3360 \, x^{4} + 3360 \, x^{3} - 2520 \, x^{2} + 1260 \, x - 315\right )} e^{\left (4 \, x\right )} + 32768 \, {\left (243 \, x^{7} e^{6} - 567 \, x^{6} e^{6} + 1134 \, x^{5} e^{6} - 1890 \, x^{4} e^{6} + 2520 \, x^{3} e^{6} - 2520 \, x^{2} e^{6} + 1680 \, x e^{6} - 560 \, e^{6}\right )} e^{\left (3 \, x\right )} + 327680 \, {\left (81 \, x^{6} e^{6} - 162 \, x^{5} e^{6} + 270 \, x^{4} e^{6} - 360 \, x^{3} e^{6} + 360 \, x^{2} e^{6} - 240 \, x e^{6} + 80 \, e^{6}\right )} e^{\left (3 \, x\right )} + 196608 \, {\left (81 \, x^{5} e^{6} - 135 \, x^{4} e^{6} + 180 \, x^{3} e^{6} - 180 \, x^{2} e^{6} + 120 \, x e^{6} - 40 \, e^{6}\right )} e^{\left (3 \, x\right )} + 47775744 \, {\left (4 \, x^{6} e^{12} - 12 \, x^{5} e^{12} + 30 \, x^{4} e^{12} - 60 \, x^{3} e^{12} + 90 \, x^{2} e^{12} - 90 \, x e^{12} + 45 \, e^{12}\right )} e^{\left (2 \, x\right )} + 238878720 \, {\left (4 \, x^{5} e^{12} - 10 \, x^{4} e^{12} + 20 \, x^{3} e^{12} - 30 \, x^{2} e^{12} + 30 \, x e^{12} - 15 \, e^{12}\right )} e^{\left (2 \, x\right )} + 573308928 \, {\left (2 \, x^{4} e^{12} - 4 \, x^{3} e^{12} + 6 \, x^{2} e^{12} - 6 \, x e^{12} + 3 \, e^{12}\right )} e^{\left (2 \, x\right )} + 95551488 \, {\left (4 \, x^{3} e^{12} - 6 \, x^{2} e^{12} + 6 \, x e^{12} - 3 \, e^{12}\right )} e^{\left (2 \, x\right )} + 2038431744 \, {\left (x^{5} e^{18} - 5 \, x^{4} e^{18} + 20 \, x^{3} e^{18} - 60 \, x^{2} e^{18} + 120 \, x e^{18} - 120 \, e^{18}\right )} e^{x} + 16307453952 \, {\left (x^{4} e^{18} - 4 \, x^{3} e^{18} + 12 \, x^{2} e^{18} - 24 \, x e^{18} + 24 \, e^{18}\right )} e^{x} + 30576476160 \, {\left (x^{3} e^{18} - 3 \, x^{2} e^{18} + 6 \, x e^{18} - 6 \, e^{18}\right )} e^{x} + 20384317440 \, {\left (x^{2} e^{18} - 2 \, x e^{18} + 2 \, e^{18}\right )} e^{x} + 4076863488 \, {\left (x e^{18} - e^{18}\right )} e^{x} - \frac {8153726976 \, e^{24}}{x}\right )} e^{\left (-24\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.35, size = 124, normalized size = 5.17 \begin {gather*} 4\,x+\frac {x^2\,{\mathrm {e}}^{x-6}}{4}+\frac {3\,x^3\,{\mathrm {e}}^{x-6}}{4}+\frac {3\,x^4\,{\mathrm {e}}^{x-6}}{4}+\frac {x^5\,{\mathrm {e}}^{x-6}}{4}+\frac {3\,x^4\,{\mathrm {e}}^{2\,x-12}}{128}+\frac {3\,x^5\,{\mathrm {e}}^{2\,x-12}}{64}+\frac {3\,x^6\,{\mathrm {e}}^{2\,x-12}}{128}+\frac {x^6\,{\mathrm {e}}^{3\,x-18}}{1024}+\frac {x^7\,{\mathrm {e}}^{3\,x-18}}{1024}+\frac {x^8\,{\mathrm {e}}^{4\,x-24}}{65536}-\frac {1}{x}+6\,x^2+4\,x^3+x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.37, size = 128, normalized size = 5.33 \begin {gather*} x^{4} + 4 x^{3} + 6 x^{2} + 4 x + \frac {524288 x^{8} e^{36} e^{4 x} + \left (33554432 x^{7} e^{42} + 33554432 x^{6} e^{42}\right ) e^{3 x} + \left (805306368 x^{6} e^{48} + 1610612736 x^{5} e^{48} + 805306368 x^{4} e^{48}\right ) e^{2 x} + \left (8589934592 x^{5} e^{54} + 25769803776 x^{4} e^{54} + 25769803776 x^{3} e^{54} + 8589934592 x^{2} e^{54}\right ) e^{x}}{34359738368 e^{60}} - \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________