3.17.90 e12log(5x)+2xlog2(5x)2xlog2(5x)dx

Optimal. Leaf size=17 4e12log(5x)+x

________________________________________________________________________________________

Rubi [A]  time = 0.35, antiderivative size = 16, normalized size of antiderivative = 0.94, number of steps used = 5, number of rules used = 3, integrand size = 35, number of rulesintegrand size = 0.086, Rules used = {12, 6742, 2209} xe12log(5x)

Antiderivative was successfully verified.

[In]

Int[(E^(1/(2*Log[5*x])) + 2*x*Log[5*x]^2)/(2*x*Log[5*x]^2),x]

[Out]

-E^(1/(2*Log[5*x])) + x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2209

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=12e12log(5x)+2xlog2(5x)xlog2(5x)dx=12(2+e12log(5x)xlog2(5x))dx=x+12e12log(5x)xlog2(5x)dx=x+12Subst(e12/xx2dx,x,log(5x))=e12log(5x)+x

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 16, normalized size = 0.94 e12log(5x)+x

Antiderivative was successfully verified.

[In]

Integrate[(E^(1/(2*Log[5*x])) + 2*x*Log[5*x]^2)/(2*x*Log[5*x]^2),x]

[Out]

-E^(1/(2*Log[5*x])) + x

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 13, normalized size = 0.76 xe(12log(5x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(exp(1/2/log(5*x))+2*x*log(5*x)^2)/x/log(5*x)^2,x, algorithm="fricas")

[Out]

x - e^(1/2/log(5*x))

________________________________________________________________________________________

giac [A]  time = 0.24, size = 14, normalized size = 0.82 xe(12(log(5)+log(x)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(exp(1/2/log(5*x))+2*x*log(5*x)^2)/x/log(5*x)^2,x, algorithm="giac")

[Out]

x - e^(1/2/(log(5) + log(x)))

________________________________________________________________________________________

maple [A]  time = 0.02, size = 14, normalized size = 0.82




method result size



default xe12ln(5x) 14
risch xe12ln(5x) 14
norman xln(5x)ln(5x)e12ln(5x)ln(5x) 30



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/2*(exp(1/2/ln(5*x))+2*x*ln(5*x)^2)/x/ln(5*x)^2,x,method=_RETURNVERBOSE)

[Out]

x-exp(1/2/ln(5*x))

________________________________________________________________________________________

maxima [A]  time = 0.85, size = 13, normalized size = 0.76 xe(12log(5x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(exp(1/2/log(5*x))+2*x*log(5*x)^2)/x/log(5*x)^2,x, algorithm="maxima")

[Out]

x - e^(1/2/log(5*x))

________________________________________________________________________________________

mupad [B]  time = 1.13, size = 13, normalized size = 0.76 xe12ln(5x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(1/(2*log(5*x)))/2 + x*log(5*x)^2)/(x*log(5*x)^2),x)

[Out]

x - exp(1/(2*log(5*x)))

________________________________________________________________________________________

sympy [A]  time = 0.29, size = 10, normalized size = 0.59 xe12log(5x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(exp(1/2/ln(5*x))+2*x*ln(5*x)**2)/x/ln(5*x)**2,x)

[Out]

x - exp(1/(2*log(5*x)))

________________________________________________________________________________________