Optimal. Leaf size=17 \[ -4-e^{\frac {1}{2 \log (5 x)}}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.35, antiderivative size = 16, normalized size of antiderivative = 0.94, number of steps used = 5, number of rules used = 3, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {12, 6742, 2209} \begin {gather*} x-e^{\frac {1}{2 \log (5 x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2209
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {e^{\frac {1}{2 \log (5 x)}}+2 x \log ^2(5 x)}{x \log ^2(5 x)} \, dx\\ &=\frac {1}{2} \int \left (2+\frac {e^{\frac {1}{2 \log (5 x)}}}{x \log ^2(5 x)}\right ) \, dx\\ &=x+\frac {1}{2} \int \frac {e^{\frac {1}{2 \log (5 x)}}}{x \log ^2(5 x)} \, dx\\ &=x+\frac {1}{2} \operatorname {Subst}\left (\int \frac {e^{\left .\frac {1}{2}\right /x}}{x^2} \, dx,x,\log (5 x)\right )\\ &=-e^{\frac {1}{2 \log (5 x)}}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 16, normalized size = 0.94 \begin {gather*} -e^{\frac {1}{2 \log (5 x)}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 13, normalized size = 0.76 \begin {gather*} x - e^{\left (\frac {1}{2 \, \log \left (5 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 14, normalized size = 0.82 \begin {gather*} x - e^{\left (\frac {1}{2 \, {\left (\log \relax (5) + \log \relax (x)\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 14, normalized size = 0.82
method | result | size |
default | \(x -{\mathrm e}^{\frac {1}{2 \ln \left (5 x \right )}}\) | \(14\) |
risch | \(x -{\mathrm e}^{\frac {1}{2 \ln \left (5 x \right )}}\) | \(14\) |
norman | \(\frac {x \ln \left (5 x \right )-\ln \left (5 x \right ) {\mathrm e}^{\frac {1}{2 \ln \left (5 x \right )}}}{\ln \left (5 x \right )}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.85, size = 13, normalized size = 0.76 \begin {gather*} x - e^{\left (\frac {1}{2 \, \log \left (5 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.13, size = 13, normalized size = 0.76 \begin {gather*} x-{\mathrm {e}}^{\frac {1}{2\,\ln \left (5\,x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 10, normalized size = 0.59 \begin {gather*} x - e^{\frac {1}{2 \log {\left (5 x \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________