Optimal. Leaf size=26 \[ \frac {3 (4+x)-\frac {1}{4} \left (-4+\frac {3}{5+\log (4)}\right ) \log (x)}{e^4} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.129, Rules used = {6, 12, 186, 43} \begin {gather*} \frac {3 x}{e^4}+\frac {(17+\log (256)) \log (x)}{4 e^4 (5+\log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 43
Rule 186
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {17+60 x+(4+12 x) \log (4)}{e^4 x (20+4 \log (4))} \, dx\\ &=\frac {\int \frac {17+60 x+(4+12 x) \log (4)}{x} \, dx}{4 e^4 (5+\log (4))}\\ &=\frac {\int \frac {17+12 x (5+\log (4))+\log (256)}{x} \, dx}{4 e^4 (5+\log (4))}\\ &=\frac {\int \left (12 (5+\log (4))+\frac {17+\log (256)}{x}\right ) \, dx}{4 e^4 (5+\log (4))}\\ &=\frac {3 x}{e^4}+\frac {(17+\log (256)) \log (x)}{4 e^4 (5+\log (4))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 28, normalized size = 1.08 \begin {gather*} \frac {12 x (5+\log (4))+(17+\log (256)) \log (x)}{4 e^4 (5+\log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 33, normalized size = 1.27 \begin {gather*} \frac {24 \, x \log \relax (2) + {\left (8 \, \log \relax (2) + 17\right )} \log \relax (x) + 60 \, x}{4 \, {\left (2 \, e^{4} \log \relax (2) + 5 \, e^{4}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 49, normalized size = 1.88 \begin {gather*} \frac {{\left (8 \, \log \relax (2) + 17\right )} \log \left ({\left | x \right |}\right )}{4 \, {\left (2 \, e^{4} \log \relax (2) + 5 \, e^{4}\right )}} + \frac {3 \, {\left (2 \, x \log \relax (2) + 5 \, x\right )}}{2 \, e^{4} \log \relax (2) + 5 \, e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 31, normalized size = 1.19
method | result | size |
norman | \(3 x \,{\mathrm e}^{-4}+\frac {\left (8 \ln \relax (2)+17\right ) {\mathrm e}^{-4} \ln \relax (x )}{8 \ln \relax (2)+20}\) | \(31\) |
default | \(\frac {{\mathrm e}^{-4} \left (24 x \ln \relax (2)+60 x +\left (8 \ln \relax (2)+17\right ) \ln \relax (x )\right )}{8 \ln \relax (2)+20}\) | \(33\) |
risch | \(3 x \,{\mathrm e}^{-4}+\frac {2 \,{\mathrm e}^{-4} \ln \relax (x ) \ln \relax (2)}{2 \ln \relax (2)+5}+\frac {17 \,{\mathrm e}^{-4} \ln \relax (x )}{4 \left (2 \ln \relax (2)+5\right )}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 29, normalized size = 1.12 \begin {gather*} 3 \, x e^{\left (-4\right )} + \frac {{\left (8 \, \log \relax (2) + 17\right )} \log \relax (x)}{4 \, {\left (2 \, e^{4} \log \relax (2) + 5 \, e^{4}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.12, size = 42, normalized size = 1.62 \begin {gather*} \frac {x\,\left (24\,\ln \relax (2)+60\right )}{20\,{\mathrm {e}}^4+8\,{\mathrm {e}}^4\,\ln \relax (2)}+\frac {\ln \relax (x)\,\left (\ln \left (256\right )+17\right )}{20\,{\mathrm {e}}^4+8\,{\mathrm {e}}^4\,\ln \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 31, normalized size = 1.19 \begin {gather*} \frac {x \left (24 \log {\relax (2 )} + 60\right ) + \left (8 \log {\relax (2 )} + 17\right ) \log {\relax (x )}}{8 e^{4} \log {\relax (2 )} + 20 e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________