3.17.89 17+60x+(4+12x)log(4)20e4x+4e4xlog(4)dx

Optimal. Leaf size=26 3(4+x)14(4+35+log(4))log(x)e4

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 31, number of rulesintegrand size = 0.129, Rules used = {6, 12, 186, 43} 3xe4+(17+log(256))log(x)4e4(5+log(4))

Antiderivative was successfully verified.

[In]

Int[(17 + 60*x + (4 + 12*x)*Log[4])/(20*E^4*x + 4*E^4*x*Log[4]),x]

[Out]

(3*x)/E^4 + ((17 + Log[256])*Log[x])/(4*E^4*(5 + Log[4]))

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 186

Int[(u_)^(m_.)*(v_)^(n_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*ExpandToSum[v, x]^n, x] /; FreeQ[{m, n}, x] &&
 LinearQ[{u, v}, x] &&  !LinearMatchQ[{u, v}, x]

Rubi steps

integral=17+60x+(4+12x)log(4)e4x(20+4log(4))dx=17+60x+(4+12x)log(4)xdx4e4(5+log(4))=17+12x(5+log(4))+log(256)xdx4e4(5+log(4))=(12(5+log(4))+17+log(256)x)dx4e4(5+log(4))=3xe4+(17+log(256))log(x)4e4(5+log(4))

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 28, normalized size = 1.08 12x(5+log(4))+(17+log(256))log(x)4e4(5+log(4))

Antiderivative was successfully verified.

[In]

Integrate[(17 + 60*x + (4 + 12*x)*Log[4])/(20*E^4*x + 4*E^4*x*Log[4]),x]

[Out]

(12*x*(5 + Log[4]) + (17 + Log[256])*Log[x])/(4*E^4*(5 + Log[4]))

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 33, normalized size = 1.27 24xlog(2)+(8log(2)+17)log(x)+60x4(2e4log(2)+5e4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*(12*x+4)*log(2)+60*x+17)/(8*x*exp(4)*log(2)+20*x*exp(4)),x, algorithm="fricas")

[Out]

1/4*(24*x*log(2) + (8*log(2) + 17)*log(x) + 60*x)/(2*e^4*log(2) + 5*e^4)

________________________________________________________________________________________

giac [B]  time = 0.17, size = 49, normalized size = 1.88 (8log(2)+17)log(|x|)4(2e4log(2)+5e4)+3(2xlog(2)+5x)2e4log(2)+5e4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*(12*x+4)*log(2)+60*x+17)/(8*x*exp(4)*log(2)+20*x*exp(4)),x, algorithm="giac")

[Out]

1/4*(8*log(2) + 17)*log(abs(x))/(2*e^4*log(2) + 5*e^4) + 3*(2*x*log(2) + 5*x)/(2*e^4*log(2) + 5*e^4)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 31, normalized size = 1.19




method result size



norman 3xe4+(8ln(2)+17)e4ln(x)8ln(2)+20 31
default e4(24xln(2)+60x+(8ln(2)+17)ln(x))8ln(2)+20 33
risch 3xe4+2e4ln(x)ln(2)2ln(2)+5+17e4ln(x)4(2ln(2)+5) 37



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*(12*x+4)*ln(2)+60*x+17)/(8*x*exp(4)*ln(2)+20*x*exp(4)),x,method=_RETURNVERBOSE)

[Out]

3*x/exp(4)+1/4*(8*ln(2)+17)/exp(4)/(2*ln(2)+5)*ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.44, size = 29, normalized size = 1.12 3xe(4)+(8log(2)+17)log(x)4(2e4log(2)+5e4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*(12*x+4)*log(2)+60*x+17)/(8*x*exp(4)*log(2)+20*x*exp(4)),x, algorithm="maxima")

[Out]

3*x*e^(-4) + 1/4*(8*log(2) + 17)*log(x)/(2*e^4*log(2) + 5*e^4)

________________________________________________________________________________________

mupad [B]  time = 1.12, size = 42, normalized size = 1.62 x(24ln(2)+60)20e4+8e4ln(2)+ln(x)(ln(256)+17)20e4+8e4ln(2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((60*x + 2*log(2)*(12*x + 4) + 17)/(20*x*exp(4) + 8*x*exp(4)*log(2)),x)

[Out]

(x*(24*log(2) + 60))/(20*exp(4) + 8*exp(4)*log(2)) + (log(x)*(log(256) + 17))/(20*exp(4) + 8*exp(4)*log(2))

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 31, normalized size = 1.19 x(24log(2)+60)+(8log(2)+17)log(x)8e4log(2)+20e4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*(12*x+4)*ln(2)+60*x+17)/(8*x*exp(4)*ln(2)+20*x*exp(4)),x)

[Out]

(x*(24*log(2) + 60) + (8*log(2) + 17)*log(x))/(8*exp(4)*log(2) + 20*exp(4))

________________________________________________________________________________________