Optimal. Leaf size=31 \[ e^{-4-2 e^{e^9-(x+\log (1-x))^2}+2 x} x^3 \]
________________________________________________________________________________________
Rubi [F] time = 16.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-4-2 e^{e^9-x^2-2 x \log (1-x)-\log ^2(1-x)}+2 x\right ) \left (-3 x^2+x^3+2 x^4+e^{e^9-x^2-2 x \log (1-x)-\log ^2(1-x)} \left (4 x^5+4 x^4 \log (1-x)\right )\right )}{-1+x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\exp \left (-4-2 e^{e^9-x^2-2 x \log (1-x)-\log ^2(1-x)}+2 x\right ) x^2 (3+2 x)-4 \exp \left (-4+e^9-2 e^{e^9-x^2-2 x \log (1-x)-\log ^2(1-x)}+2 x-x^2-\log ^2(1-x)\right ) (1-x)^{-1-2 x} x^4 (x+\log (1-x))\right ) \, dx\\ &=-\left (4 \int \exp \left (-4+e^9-2 e^{e^9-x^2-2 x \log (1-x)-\log ^2(1-x)}+2 x-x^2-\log ^2(1-x)\right ) (1-x)^{-1-2 x} x^4 (x+\log (1-x)) \, dx\right )+\int \exp \left (-4-2 e^{e^9-x^2-2 x \log (1-x)-\log ^2(1-x)}+2 x\right ) x^2 (3+2 x) \, dx\\ &=-\left (4 \int \exp \left (-2 e^{e^9-x^2-2 x \log (1-x)-\log ^2(1-x)}-4 \left (1-\frac {e^9}{4}\right )+2 x-x^2-\log ^2(1-x)\right ) (1-x)^{-1-2 x} x^4 (x+\log (1-x)) \, dx\right )+\int \left (3 \exp \left (-4-2 e^{e^9-x^2-2 x \log (1-x)-\log ^2(1-x)}+2 x\right ) x^2+2 \exp \left (-4-2 e^{e^9-x^2-2 x \log (1-x)-\log ^2(1-x)}+2 x\right ) x^3\right ) \, dx\\ &=2 \int \exp \left (-4-2 e^{e^9-x^2-2 x \log (1-x)-\log ^2(1-x)}+2 x\right ) x^3 \, dx+3 \int \exp \left (-4-2 e^{e^9-x^2-2 x \log (1-x)-\log ^2(1-x)}+2 x\right ) x^2 \, dx-4 \int \left (\exp \left (-2 e^{e^9-x^2-2 x \log (1-x)-\log ^2(1-x)}-4 \left (1-\frac {e^9}{4}\right )+2 x-x^2-\log ^2(1-x)\right ) (1-x)^{-1-2 x} x^5+\exp \left (-2 e^{e^9-x^2-2 x \log (1-x)-\log ^2(1-x)}-4 \left (1-\frac {e^9}{4}\right )+2 x-x^2-\log ^2(1-x)\right ) (1-x)^{-1-2 x} x^4 \log (1-x)\right ) \, dx\\ &=2 \int \exp \left (-4-2 e^{e^9-x^2-2 x \log (1-x)-\log ^2(1-x)}+2 x\right ) x^3 \, dx+3 \int \exp \left (-4-2 e^{e^9-x^2-2 x \log (1-x)-\log ^2(1-x)}+2 x\right ) x^2 \, dx-4 \int \exp \left (-2 e^{e^9-x^2-2 x \log (1-x)-\log ^2(1-x)}-4 \left (1-\frac {e^9}{4}\right )+2 x-x^2-\log ^2(1-x)\right ) (1-x)^{-1-2 x} x^5 \, dx-4 \int \exp \left (-2 e^{e^9-x^2-2 x \log (1-x)-\log ^2(1-x)}-4 \left (1-\frac {e^9}{4}\right )+2 x-x^2-\log ^2(1-x)\right ) (1-x)^{-1-2 x} x^4 \log (1-x) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 43, normalized size = 1.39 \begin {gather*} e^{-4-2 e^{e^9-x^2-\log ^2(1-x)} (1-x)^{-2 x}+2 x} x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 40, normalized size = 1.29 \begin {gather*} x^{3} e^{\left (2 \, x - 2 \, e^{\left (-x^{2} - 2 \, x \log \left (-x + 1\right ) - \log \left (-x + 1\right )^{2} + e^{9}\right )} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (2 \, x^{4} + x^{3} - 3 \, x^{2} + 4 \, {\left (x^{5} + x^{4} \log \left (-x + 1\right )\right )} e^{\left (-x^{2} - 2 \, x \log \left (-x + 1\right ) - \log \left (-x + 1\right )^{2} + e^{9}\right )}\right )} e^{\left (2 \, x - 2 \, e^{\left (-x^{2} - 2 \, x \log \left (-x + 1\right ) - \log \left (-x + 1\right )^{2} + e^{9}\right )} - 4\right )}}{x - 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.31, size = 41, normalized size = 1.32
method | result | size |
risch | \(x^{3} {\mathrm e}^{-2 \left (1-x \right )^{-2 x} {\mathrm e}^{-\ln \left (1-x \right )^{2}+{\mathrm e}^{9}-x^{2}}-4+2 x}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (2 \, x^{4} + x^{3} - 3 \, x^{2} + 4 \, {\left (x^{5} + x^{4} \log \left (-x + 1\right )\right )} e^{\left (-x^{2} - 2 \, x \log \left (-x + 1\right ) - \log \left (-x + 1\right )^{2} + e^{9}\right )}\right )} e^{\left (2 \, x - 2 \, e^{\left (-x^{2} - 2 \, x \log \left (-x + 1\right ) - \log \left (-x + 1\right )^{2} + e^{9}\right )} - 4\right )}}{x - 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.16, size = 44, normalized size = 1.42 \begin {gather*} x^3\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-\frac {2\,{\mathrm {e}}^{-x^2}\,{\mathrm {e}}^{-{\ln \left (1-x\right )}^2}\,{\mathrm {e}}^{{\mathrm {e}}^9}}{{\left (1-x\right )}^{2\,x}}}\,{\mathrm {e}}^{-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________