3.17.96
Optimal. Leaf size=24
________________________________________________________________________________________
Rubi [B] time = 0.31, antiderivative size = 58, normalized size of antiderivative = 2.42,
number of steps used = 5, number of rules used = 5, integrand size = 98, = 0.051, Rules used =
{1680, 12, 1814, 21, 8}
Antiderivative was successfully verified.
[In]
Int[(-4*x^2 + 2*x^4 + (24*x + 5*x^2 - 12*x^3 - 4*x^4)*Log[4] + (-36 - 24*x + 14*x^2 + 12*x^3 + 2*x^4)*Log[4]^2
)/(x^4 + (-6*x^3 - 2*x^4)*Log[4] + (9*x^2 + 6*x^3 + x^4)*Log[4]^2),x]
[Out]
2*x - (12*(1 - Log[4])*Log[4] - x*(4 - 5*Log[4] + 4*Log[4]^2))/(x*(x*(1 - Log[4]) - 3*Log[4])*(1 - Log[4]))
Rule 8
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 21
Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
d*x, a + b*x])
Rule 1680
Int[(Pq_)*(Q4_)^(p_), x_Symbol] :> With[{a = Coeff[Q4, x, 0], b = Coeff[Q4, x, 1], c = Coeff[Q4, x, 2], d = Co
eff[Q4, x, 3], e = Coeff[Q4, x, 4]}, Subst[Int[SimplifyIntegrand[(Pq /. x -> -(d/(4*e)) + x)*(a + d^4/(256*e^3
) - (b*d)/(8*e) + (c - (3*d^2)/(8*e))*x^2 + e*x^4)^p, x], x], x, d/(4*e) + x] /; EqQ[d^3 - 4*c*d*e + 8*b*e^2,
0] && NeQ[d, 0]] /; FreeQ[p, x] && PolyQ[Pq, x] && PolyQ[Q4, x, 4] && !IGtQ[p, 0]
Rule 1814
Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, a + b*x^2, x], f = Coeff[P
olynomialRemainder[Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 1]}, Simp[((a
*g - b*f*x)*(a + b*x^2)^(p + 1))/(2*a*b*(p + 1)), x] + Dist[1/(2*a*(p + 1)), Int[(a + b*x^2)^(p + 1)*ExpandToS
um[2*a*(p + 1)*Q + f*(2*p + 3), x], x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && LtQ[p, -1]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 97, normalized size = 4.04
Antiderivative was successfully verified.
[In]
Integrate[(-4*x^2 + 2*x^4 + (24*x + 5*x^2 - 12*x^3 - 4*x^4)*Log[4] + (-36 - 24*x + 14*x^2 + 12*x^3 + 2*x^4)*Lo
g[4]^2)/(x^4 + (-6*x^3 - 2*x^4)*Log[4] + (9*x^2 + 6*x^3 + x^4)*Log[4]^2),x]
[Out]
2*x + (36*Log[4]^2)/(x*Log[64]^2) + (36*Log[4]^4 - 24*Log[4]^3*(3 + Log[64]) - Log[4]*Log[64]*(24 + 5*Log[64])
+ Log[4]^2*(36 + 48*Log[64] - 14*Log[64]^2) + 2*Log[64]^2*(2 + Log[64]^2))/((-1 + Log[4])*Log[64]^2*(x*(-1 +
Log[4]) + Log[64]))
________________________________________________________________________________________
fricas [B] time = 0.87, size = 79, normalized size = 3.29
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((4*(2*x^4+12*x^3+14*x^2-24*x-36)*log(2)^2+2*(-4*x^4-12*x^3+5*x^2+24*x)*log(2)+2*x^4-4*x^2)/(4*(x^4+6
*x^3+9*x^2)*log(2)^2+2*(-2*x^4-6*x^3)*log(2)+x^4),x, algorithm="fricas")
[Out]
2*(x^3 + 4*(x^3 + 3*x^2 + 2*x + 6)*log(2)^2 - (4*x^3 + 6*x^2 + 5*x + 12)*log(2) + 2*x)/(4*(x^2 + 3*x)*log(2)^2
+ x^2 - 2*(2*x^2 + 3*x)*log(2))
________________________________________________________________________________________
giac [B] time = 0.23, size = 87, normalized size = 3.62
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((4*(2*x^4+12*x^3+14*x^2-24*x-36)*log(2)^2+2*(-4*x^4-12*x^3+5*x^2+24*x)*log(2)+2*x^4-4*x^2)/(4*(x^4+6
*x^3+9*x^2)*log(2)^2+2*(-2*x^4-6*x^3)*log(2)+x^4),x, algorithm="giac")
[Out]
2*(4*x*log(2)^2 - 4*x*log(2) + x)/(4*log(2)^2 - 4*log(2) + 1) + 2*(8*x*log(2)^2 - 5*x*log(2) + 24*log(2)^2 + 2
*x - 12*log(2))/((2*x^2*log(2) - x^2 + 6*x*log(2))*(2*log(2) - 1))
________________________________________________________________________________________
maple [A] time = 0.11, size = 37, normalized size = 1.54
|
|
|
method |
result |
size |
|
|
|
default |
|
|
risch |
|
|
norman |
|
|
gosper |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((4*(2*x^4+12*x^3+14*x^2-24*x-36)*ln(2)^2+2*(-4*x^4-12*x^3+5*x^2+24*x)*ln(2)+2*x^4-4*x^2)/(4*(x^4+6*x^3+9*x
^2)*ln(2)^2+2*(-2*x^4-6*x^3)*ln(2)+x^4),x,method=_RETURNVERBOSE)
[Out]
2*x+6*ln(2)/(2*ln(2)-1)/(2*x*ln(2)+6*ln(2)-x)+4/x
________________________________________________________________________________________
maxima [B] time = 0.38, size = 64, normalized size = 2.67
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((4*(2*x^4+12*x^3+14*x^2-24*x-36)*log(2)^2+2*(-4*x^4-12*x^3+5*x^2+24*x)*log(2)+2*x^4-4*x^2)/(4*(x^4+6
*x^3+9*x^2)*log(2)^2+2*(-2*x^4-6*x^3)*log(2)+x^4),x, algorithm="maxima")
[Out]
2*x + 2*((8*log(2)^2 - 5*log(2) + 2)*x + 24*log(2)^2 - 12*log(2))/((4*log(2)^2 - 4*log(2) + 1)*x^2 + 6*(2*log(
2)^2 - log(2))*x)
________________________________________________________________________________________
mupad [B] time = 1.37, size = 303, normalized size = 12.62
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((4*log(2)^2*(14*x^2 - 24*x + 12*x^3 + 2*x^4 - 36) + 2*log(2)*(24*x + 5*x^2 - 12*x^3 - 4*x^4) - 4*x^2 + 2*x
^4)/(4*log(2)^2*(9*x^2 + 6*x^3 + x^4) - 2*log(2)*(6*x^3 + 2*x^4) + x^4),x)
[Out]
(16*log(2)^2 - 4*log(16) + 4)/(x*(4*log(2)^2 - log(16) + 1)) + (x*(8*log(2)^2 - log(256) + 2))/(4*log(2)^2 - l
og(16) + 1) - (atanh(((12*log(2)*log(16) - 12*log(2) + 2*x*(4*log(2)^2 - log(16) + 1)^2 - 24*log(2)^2*log(16)
+ 24*log(2)^2 - 48*log(2)^3 + 96*log(2)^4)*(5*log(2) - 2*log(16) - 5*log(2)*log(16) - 44*log(2)^2*log(16) + 18
*log(2)^2*log(256) + 20*log(2)^3 + 2*log(16)^2))/(3*log(2)*(log(16) - 4*log(2))^(1/2)*(4*log(2)^2 - log(16) +
1)*(20*log(2) - 8*log(16) - 20*log(2)*log(16) - 176*log(2)^2*log(16) + 72*log(2)^2*log(256) + 80*log(2)^3 + 8*
log(16)^2)))*(5*log(2) - 2*log(16) - 5*log(2)*log(16) - 44*log(2)^2*log(16) + 18*log(2)^2*log(256) + 20*log(2)
^3 + 2*log(16)^2))/(3*log(2)*(log(16) - 4*log(2))^(1/2)*(4*log(2)^2 - log(16) + 1))
________________________________________________________________________________________
sympy [B] time = 1.22, size = 60, normalized size = 2.50
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((4*(2*x**4+12*x**3+14*x**2-24*x-36)*ln(2)**2+2*(-4*x**4-12*x**3+5*x**2+24*x)*ln(2)+2*x**4-4*x**2)/(4
*(x**4+6*x**3+9*x**2)*ln(2)**2+2*(-2*x**4-6*x**3)*ln(2)+x**4),x)
[Out]
2*x + (x*(-10*log(2) + 4 + 16*log(2)**2) - 24*log(2) + 48*log(2)**2)/(x**2*(-4*log(2) + 1 + 4*log(2)**2) + x*(
-6*log(2) + 12*log(2)**2))
________________________________________________________________________________________