Optimal. Leaf size=31 \[ 1-e^{\frac {x^4 \left (-x+x \left (\frac {1}{x}+x\right )\right )^2}{(x-\log (x))^2}} \]
________________________________________________________________________________________
Rubi [F] time = 7.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {x^4-2 x^5+3 x^6-2 x^7+x^8}{x^2-2 x \log (x)+\log ^2(x)}\right ) \left (2 x^3-2 x^4+8 x^6-8 x^7+6 x^8+\left (-4 x^3+10 x^4-18 x^5+14 x^6-8 x^7\right ) \log (x)\right )}{-x^3+3 x^2 \log (x)-3 x \log ^2(x)+\log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^3 \left (1-x+x^2\right ) \left (-1+x^2-3 x^3-\left (-2+3 x-4 x^2\right ) \log (x)\right )}{(x-\log (x))^3} \, dx\\ &=2 \int \frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^3 \left (1-x+x^2\right ) \left (-1+x^2-3 x^3-\left (-2+3 x-4 x^2\right ) \log (x)\right )}{(x-\log (x))^3} \, dx\\ &=2 \int \left (\frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} (-1+x) x^3 \left (1-x+x^2\right )^2}{(x-\log (x))^3}-\frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^3 \left (2-5 x+9 x^2-7 x^3+4 x^4\right )}{(x-\log (x))^2}\right ) \, dx\\ &=2 \int \frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} (-1+x) x^3 \left (1-x+x^2\right )^2}{(x-\log (x))^3} \, dx-2 \int \frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^3 \left (2-5 x+9 x^2-7 x^3+4 x^4\right )}{(x-\log (x))^2} \, dx\\ &=2 \int \left (-\frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^3}{(x-\log (x))^3}+\frac {3 e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^4}{(x-\log (x))^3}-\frac {5 e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^5}{(x-\log (x))^3}+\frac {5 e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^6}{(x-\log (x))^3}-\frac {3 e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^7}{(x-\log (x))^3}+\frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^8}{(x-\log (x))^3}\right ) \, dx-2 \int \left (\frac {2 e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^3}{(x-\log (x))^2}-\frac {5 e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^4}{(x-\log (x))^2}+\frac {9 e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^5}{(x-\log (x))^2}-\frac {7 e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^6}{(x-\log (x))^2}+\frac {4 e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^7}{(x-\log (x))^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^3}{(x-\log (x))^3} \, dx\right )+2 \int \frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^8}{(x-\log (x))^3} \, dx-4 \int \frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^3}{(x-\log (x))^2} \, dx+6 \int \frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^4}{(x-\log (x))^3} \, dx-6 \int \frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^7}{(x-\log (x))^3} \, dx-8 \int \frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^7}{(x-\log (x))^2} \, dx-10 \int \frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^5}{(x-\log (x))^3} \, dx+10 \int \frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^6}{(x-\log (x))^3} \, dx+10 \int \frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^4}{(x-\log (x))^2} \, dx+14 \int \frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^6}{(x-\log (x))^2} \, dx-18 \int \frac {e^{\frac {x^4 \left (1-x+x^2\right )^2}{(x-\log (x))^2}} x^5}{(x-\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.48, size = 26, normalized size = 0.84 \begin {gather*} -e^{\frac {x^4 \left (1-x+x^2\right )^2}{(-x+\log (x))^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 41, normalized size = 1.32 \begin {gather*} -e^{\left (\frac {x^{8} - 2 \, x^{7} + 3 \, x^{6} - 2 \, x^{5} + x^{4}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.51, size = 102, normalized size = 3.29 \begin {gather*} -e^{\left (\frac {x^{8}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}} - \frac {2 \, x^{7}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}} + \frac {3 \, x^{6}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}} - \frac {2 \, x^{5}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}} + \frac {x^{4}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 26, normalized size = 0.84
method | result | size |
risch | \(-{\mathrm e}^{\frac {x^{4} \left (x^{2}-x +1\right )^{2}}{\left (\ln \relax (x )-x \right )^{2}}}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 2.17, size = 343, normalized size = 11.06 \begin {gather*} -e^{\left (\frac {\log \relax (x)^{8}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}} + x^{6} + 2 \, x^{5} \log \relax (x) + 3 \, x^{4} \log \relax (x)^{2} + 4 \, x^{3} \log \relax (x)^{3} + 5 \, x^{2} \log \relax (x)^{4} + 6 \, x \log \relax (x)^{5} + 7 \, \log \relax (x)^{6} - \frac {2 \, \log \relax (x)^{7}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}} + \frac {8 \, \log \relax (x)^{7}}{x - \log \relax (x)} - 2 \, x^{5} - 4 \, x^{4} \log \relax (x) - 6 \, x^{3} \log \relax (x)^{2} - 8 \, x^{2} \log \relax (x)^{3} - 10 \, x \log \relax (x)^{4} - 12 \, \log \relax (x)^{5} + \frac {3 \, \log \relax (x)^{6}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}} - \frac {14 \, \log \relax (x)^{6}}{x - \log \relax (x)} + 3 \, x^{4} + 6 \, x^{3} \log \relax (x) + 9 \, x^{2} \log \relax (x)^{2} + 12 \, x \log \relax (x)^{3} + 15 \, \log \relax (x)^{4} - \frac {2 \, \log \relax (x)^{5}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}} + \frac {18 \, \log \relax (x)^{5}}{x - \log \relax (x)} - 2 \, x^{3} - 4 \, x^{2} \log \relax (x) - 6 \, x \log \relax (x)^{2} - 8 \, \log \relax (x)^{3} + \frac {\log \relax (x)^{4}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}} - \frac {10 \, \log \relax (x)^{4}}{x - \log \relax (x)} + x^{2} + 2 \, x \log \relax (x) + 3 \, \log \relax (x)^{2} + \frac {4 \, \log \relax (x)^{3}}{x - \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.31, size = 105, normalized size = 3.39 \begin {gather*} -{\mathrm {e}}^{\frac {x^4}{x^2-2\,x\,\ln \relax (x)+{\ln \relax (x)}^2}}\,{\mathrm {e}}^{-\frac {2\,x^5}{x^2-2\,x\,\ln \relax (x)+{\ln \relax (x)}^2}}\,{\mathrm {e}}^{\frac {x^8}{x^2-2\,x\,\ln \relax (x)+{\ln \relax (x)}^2}}\,{\mathrm {e}}^{\frac {3\,x^6}{x^2-2\,x\,\ln \relax (x)+{\ln \relax (x)}^2}}\,{\mathrm {e}}^{-\frac {2\,x^7}{x^2-2\,x\,\ln \relax (x)+{\ln \relax (x)}^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.63, size = 39, normalized size = 1.26 \begin {gather*} - e^{\frac {x^{8} - 2 x^{7} + 3 x^{6} - 2 x^{5} + x^{4}}{x^{2} - 2 x \log {\relax (x )} + \log {\relax (x )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________