Optimal. Leaf size=20 \[ \frac {1}{5} \log \left (\log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.51, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2+4 x+(8-4 x) \log (-2+x)}{\left (10-25 x+10 x^2\right ) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{1-4 x+4 x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2 (1-2 x-4 \log (-2+x)+2 x \log (-2+x))}{15 (-2+x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}+\frac {4 (1-2 x-4 \log (-2+x)+2 x \log (-2+x))}{15 (-1+2 x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}\right ) \, dx\\ &=-\left (\frac {2}{15} \int \frac {1-2 x-4 \log (-2+x)+2 x \log (-2+x)}{(-2+x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx\right )+\frac {4}{15} \int \frac {1-2 x-4 \log (-2+x)+2 x \log (-2+x)}{(-1+2 x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx\\ &=-\left (\frac {2}{15} \int \left (-\frac {4}{(-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}+\frac {2 x}{(-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}+\frac {1}{(-2+x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}-\frac {2 x}{(-2+x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}\right ) \, dx\right )+\frac {4}{15} \int \left (-\frac {4}{(-1+2 x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}+\frac {2 x}{(-1+2 x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}+\frac {1}{(-1+2 x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}-\frac {2 x}{(-1+2 x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}\right ) \, dx\\ &=-\left (\frac {2}{15} \int \frac {1}{(-2+x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx\right )-\frac {4}{15} \int \frac {x}{(-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx+\frac {4}{15} \int \frac {x}{(-2+x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx+\frac {4}{15} \int \frac {1}{(-1+2 x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx+\frac {8}{15} \int \frac {1}{(-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx+\frac {8}{15} \int \frac {x}{(-1+2 x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx-\frac {8}{15} \int \frac {x}{(-1+2 x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx-\frac {16}{15} \int \frac {1}{(-1+2 x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx\\ &=-\left (\frac {2}{15} \int \frac {1}{(-2+x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx\right )-\frac {4}{15} \int \left (\frac {1}{\log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}+\frac {2}{(-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}\right ) \, dx+\frac {4}{15} \int \left (\frac {1}{\log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}+\frac {2}{(-2+x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}\right ) \, dx+\frac {4}{15} \int \frac {1}{(-1+2 x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx+\frac {8}{15} \int \left (\frac {1}{2 \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}+\frac {1}{2 (-1+2 x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}\right ) \, dx-\frac {8}{15} \int \left (\frac {1}{2 \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}+\frac {1}{2 (-1+2 x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )}\right ) \, dx+\frac {8}{15} \int \frac {1}{(-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx-\frac {16}{15} \int \frac {1}{(-1+2 x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx\\ &=-\left (\frac {2}{15} \int \frac {1}{(-2+x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx\right )+\frac {4}{15} \int \frac {1}{(-1+2 x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx+\frac {8}{15} \int \frac {1}{(-2+x) \log (-2+x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx-\frac {16}{15} \int \frac {1}{(-1+2 x) \log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 20, normalized size = 1.00 \begin {gather*} \frac {1}{5} \log \left (\log \left (\frac {\log ^2(-2+x)}{(-1+2 x)^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 23, normalized size = 1.15 \begin {gather*} \frac {1}{5} \, \log \left (\log \left (\frac {\log \left (x - 2\right )^{2}}{4 \, x^{2} - 4 \, x + 1}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 24, normalized size = 1.20 \begin {gather*} \frac {1}{5} \, \log \left (\log \left (4 \, x^{2} - 4 \, x + 1\right ) - \log \left (\log \left (x - 2\right )^{2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.49, size = 24, normalized size = 1.20
method | result | size |
norman | \(\frac {\ln \left (\ln \left (\frac {\ln \left (x -2\right )^{2}}{4 x^{2}-4 x +1}\right )\right )}{5}\) | \(24\) |
risch | \(\frac {\ln \left (\ln \left (\ln \left (x -2\right )\right )-\frac {i \left (\pi \,\mathrm {csgn}\left (\frac {i}{\left (x -\frac {1}{2}\right )^{2}}\right ) \mathrm {csgn}\left (i \ln \left (x -2\right )^{2}\right ) \mathrm {csgn}\left (\frac {i \ln \left (x -2\right )^{2}}{\left (x -\frac {1}{2}\right )^{2}}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{\left (x -\frac {1}{2}\right )^{2}}\right ) \mathrm {csgn}\left (\frac {i \ln \left (x -2\right )^{2}}{\left (x -\frac {1}{2}\right )^{2}}\right )^{2}-\pi \mathrm {csgn}\left (i \left (x -\frac {1}{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (x -\frac {1}{2}\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (x -\frac {1}{2}\right )\right ) \mathrm {csgn}\left (i \left (x -\frac {1}{2}\right )^{2}\right )^{2}-\pi \mathrm {csgn}\left (i \left (x -\frac {1}{2}\right )^{2}\right )^{3}+\pi \mathrm {csgn}\left (i \ln \left (x -2\right )\right )^{2} \mathrm {csgn}\left (i \ln \left (x -2\right )^{2}\right )-2 \pi \,\mathrm {csgn}\left (i \ln \left (x -2\right )\right ) \mathrm {csgn}\left (i \ln \left (x -2\right )^{2}\right )^{2}+\pi \mathrm {csgn}\left (i \ln \left (x -2\right )^{2}\right )^{3}-\pi \,\mathrm {csgn}\left (i \ln \left (x -2\right )^{2}\right ) \mathrm {csgn}\left (\frac {i \ln \left (x -2\right )^{2}}{\left (x -\frac {1}{2}\right )^{2}}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \ln \left (x -2\right )^{2}}{\left (x -\frac {1}{2}\right )^{2}}\right )^{3}-4 i \ln \left (x -\frac {1}{2}\right )-4 i \ln \relax (2)\right )}{4}\right )}{5}\) | \(255\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 17, normalized size = 0.85 \begin {gather*} \frac {1}{5} \, \log \left (\log \left (2 \, x - 1\right ) - \log \left (\log \left (x - 2\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.65, size = 23, normalized size = 1.15 \begin {gather*} \frac {\ln \left (\ln \left (\frac {{\ln \left (x-2\right )}^2}{4\,x^2-4\,x+1}\right )\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.74, size = 20, normalized size = 1.00 \begin {gather*} \frac {\log {\left (\log {\left (\frac {\log {\left (x - 2 \right )}^{2}}{4 x^{2} - 4 x + 1} \right )} \right )}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________