3.18.12 54+84x+25x2+2x3+(1526x4x2)log(5)+(1+2x)log2(5)36+12x+x2+(122x)log(5)+log2(5)dx

Optimal. Leaf size=24 3+x+x2+log(4)+x2+13(xlog(5))

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 22, normalized size of antiderivative = 0.92, number of steps used = 4, number of rules used = 3, integrand size = 61, number of rulesintegrand size = 0.049, Rules used = {1986, 27, 1850} x2+x3(6log(5))x+6log(5)

Antiderivative was successfully verified.

[In]

Int[(54 + 84*x + 25*x^2 + 2*x^3 + (-15 - 26*x - 4*x^2)*Log[5] + (1 + 2*x)*Log[5]^2)/(36 + 12*x + x^2 + (-12 -
2*x)*Log[5] + Log[5]^2),x]

[Out]

x + x^2 - (3*(6 - Log[5]))/(6 + x - Log[5])

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 1850

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^n)^p, x], x] /; FreeQ[
{a, b, n}, x] && PolyQ[Pq, x] && (IGtQ[p, 0] || EqQ[n, 1])

Rule 1986

Int[(Pq_)*(u_)^(p_.), x_Symbol] :> Int[Pq*ExpandToSum[u, x]^p, x] /; FreeQ[p, x] && PolyQ[Pq, x] && QuadraticQ
[u, x] &&  !QuadraticMatchQ[u, x]

Rubi steps

integral=54+84x+25x2+2x3+(1526x4x2)log(5)+(1+2x)log2(5)x2+2x(6log(5))+(6+log(5))2dx=54+84x+25x2+2x3+(1526x4x2)log(5)+(1+2x)log2(5)(6+xlog(5))2dx=(1+2x3(6+log(5))(6+xlog(5))2)dx=x+x23(6log(5))6+xlog(5)

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 39, normalized size = 1.62 (6+xlog(5))2+3(6+log(5))6+xlog(5)+(6+xlog(5))(11+2log(5))

Antiderivative was successfully verified.

[In]

Integrate[(54 + 84*x + 25*x^2 + 2*x^3 + (-15 - 26*x - 4*x^2)*Log[5] + (1 + 2*x)*Log[5]^2)/(36 + 12*x + x^2 + (
-12 - 2*x)*Log[5] + Log[5]^2),x]

[Out]

(6 + x - Log[5])^2 + (3*(-6 + Log[5]))/(6 + x - Log[5]) + (6 + x - Log[5])*(-11 + 2*Log[5])

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 33, normalized size = 1.38 x3+7x2(x2+x3)log(5)+6x18xlog(5)+6

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x+1)*log(5)^2+(-4*x^2-26*x-15)*log(5)+2*x^3+25*x^2+84*x+54)/(log(5)^2+(-2*x-12)*log(5)+x^2+12*x+
36),x, algorithm="fricas")

[Out]

(x^3 + 7*x^2 - (x^2 + x - 3)*log(5) + 6*x - 18)/(x - log(5) + 6)

________________________________________________________________________________________

giac [A]  time = 0.21, size = 20, normalized size = 0.83 x2+x+3(log(5)6)xlog(5)+6

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x+1)*log(5)^2+(-4*x^2-26*x-15)*log(5)+2*x^3+25*x^2+84*x+54)/(log(5)^2+(-2*x-12)*log(5)+x^2+12*x+
36),x, algorithm="giac")

[Out]

x^2 + x + 3*(log(5) - 6)/(x - log(5) + 6)

________________________________________________________________________________________

maple [A]  time = 0.33, size = 23, normalized size = 0.96




method result size



default x2+x3ln(5)+18ln(5)+x+6 23
risch x2+x3ln(5)ln(5)x6+18ln(5)x6 30
norman x3+(7+ln(5))x2+54+ln(5)215ln(5)ln(5)x6 34
gosper x2ln(5)x3+ln(5)27x215ln(5)+54ln(5)x6 37
meijerg (2ln(5)226ln(5)+84)(x(ln(5)+6)(1+xln(5)+6)+ln(1+xln(5)+6))+(2ln(5)+12)(ln(5)+6)(x(2x2(ln(5)+6)2+6xln(5)+6+12)4(ln(5)+6)(1+xln(5)+6)+3ln(1+xln(5)+6))+(4ln(5)+25)(ln(5)+6)(x(3xln(5)+6+6)3(ln(5)+6)(1+xln(5)+6)2ln(1+xln(5)+6))+ln(5)2x(ln(5)+6)2(1+xln(5)+6)15ln(5)x(ln(5)+6)2(1+xln(5)+6)+54x(ln(5)+6)2(1+xln(5)+6) 281



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x+1)*ln(5)^2+(-4*x^2-26*x-15)*ln(5)+2*x^3+25*x^2+84*x+54)/(ln(5)^2+(-2*x-12)*ln(5)+x^2+12*x+36),x,meth
od=_RETURNVERBOSE)

[Out]

x^2+x-(-3*ln(5)+18)/(-ln(5)+x+6)

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 20, normalized size = 0.83 x2+x+3(log(5)6)xlog(5)+6

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x+1)*log(5)^2+(-4*x^2-26*x-15)*log(5)+2*x^3+25*x^2+84*x+54)/(log(5)^2+(-2*x-12)*log(5)+x^2+12*x+
36),x, algorithm="maxima")

[Out]

x^2 + x + 3*(log(5) - 6)/(x - log(5) + 6)

________________________________________________________________________________________

mupad [B]  time = 1.21, size = 75, normalized size = 3.12 x(2ln(25)ln(625)+1)+x2atan(x2iln(25)1i+12iln(25)2ln(5)2ln(5)+ln(25)24)(ln(125)18)2iln(25)2ln(5)2ln(5)+ln(25)24

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((84*x - log(5)*(26*x + 4*x^2 + 15) + log(5)^2*(2*x + 1) + 25*x^2 + 2*x^3 + 54)/(12*x - log(5)*(2*x + 12) +
 log(5)^2 + x^2 + 36),x)

[Out]

x*(2*log(25) - log(625) + 1) + x^2 - (atan((x*2i - log(25)*1i + 12i)/((log(25) - 2*log(5))^(1/2)*(2*log(5) + l
og(25) - 24)^(1/2)))*(log(125) - 18)*2i)/((log(25) - 2*log(5))^(1/2)*(2*log(5) + log(25) - 24)^(1/2))

________________________________________________________________________________________

sympy [A]  time = 0.20, size = 17, normalized size = 0.71 x2+x+18+3log(5)xlog(5)+6

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x+1)*ln(5)**2+(-4*x**2-26*x-15)*ln(5)+2*x**3+25*x**2+84*x+54)/(ln(5)**2+(-2*x-12)*ln(5)+x**2+12*
x+36),x)

[Out]

x**2 + x + (-18 + 3*log(5))/(x - log(5) + 6)

________________________________________________________________________________________