3.18.11 ex2+2ex2x2log(x)+(3x+xlog(6))log2(x)(3x+xlog(6))log2(x)dx

Optimal. Leaf size=21 xex2(3log(6))log(x)

________________________________________________________________________________________

Rubi [F]  time = 0.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} ex2+2ex2x2log(x)+(3x+xlog(6))log2(x)(3x+xlog(6))log2(x)dx

Verification is not applicable to the result.

[In]

Int[(-E^x^2 + 2*E^x^2*x^2*Log[x] + (-3*x + x*Log[6])*Log[x]^2)/((-3*x + x*Log[6])*Log[x]^2),x]

[Out]

x + Defer[Int][E^x^2/(x*Log[x]^2), x]/(3 - Log[6]) - (2*Defer[Int][(E^x^2*x)/Log[x], x])/(3 - Log[6])

Rubi steps

integral=ex2+2ex2x2log(x)+(3x+xlog(6))log2(x)x(3+log(6))log2(x)dx=ex2+2ex2x2log(x)+(3x+xlog(6))log2(x)xlog2(x)dx3+log(6)=(3+log(6)ex2xlog2(x)+2ex2xlog(x))dx3+log(6)=x2ex2xlog(x)dx3log(6)ex2xlog2(x)dx3+log(6)

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 18, normalized size = 0.86 x+ex2(3+log(6))log(x)

Antiderivative was successfully verified.

[In]

Integrate[(-E^x^2 + 2*E^x^2*x^2*Log[x] + (-3*x + x*Log[6])*Log[x]^2)/((-3*x + x*Log[6])*Log[x]^2),x]

[Out]

x + E^x^2/((-3 + Log[6])*Log[x])

________________________________________________________________________________________

fricas [A]  time = 0.71, size = 27, normalized size = 1.29 (xlog(6)3x)log(x)+e(x2)(log(6)3)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x*log(6)-3*x)*log(x)^2+2*x^2*exp(x^2)*log(x)-exp(x^2))/(x*log(6)-3*x)/log(x)^2,x, algorithm="frica
s")

[Out]

((x*log(6) - 3*x)*log(x) + e^(x^2))/((log(6) - 3)*log(x))

________________________________________________________________________________________

giac [A]  time = 0.20, size = 29, normalized size = 1.38 xlog(6)log(x)3xlog(x)+e(x2)log(6)log(x)3log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x*log(6)-3*x)*log(x)^2+2*x^2*exp(x^2)*log(x)-exp(x^2))/(x*log(6)-3*x)/log(x)^2,x, algorithm="giac"
)

[Out]

(x*log(6)*log(x) - 3*x*log(x) + e^(x^2))/(log(6)*log(x) - 3*log(x))

________________________________________________________________________________________

maple [A]  time = 0.12, size = 18, normalized size = 0.86




method result size



default x+ex2(ln(6)3)ln(x) 18
risch x+ex2(ln(2)+ln(3)3)ln(x) 20
norman xln(x)+ex2ln(6)3ln(x) 22



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x*ln(6)-3*x)*ln(x)^2+2*x^2*exp(x^2)*ln(x)-exp(x^2))/(x*ln(6)-3*x)/ln(x)^2,x,method=_RETURNVERBOSE)

[Out]

x+1/(ln(6)-3)*exp(x^2)/ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.64, size = 28, normalized size = 1.33 x(log(3)+log(2)3)log(x)+e(x2)(log(3)+log(2)3)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x*log(6)-3*x)*log(x)^2+2*x^2*exp(x^2)*log(x)-exp(x^2))/(x*log(6)-3*x)/log(x)^2,x, algorithm="maxim
a")

[Out]

(x*(log(3) + log(2) - 3)*log(x) + e^(x^2))/((log(3) + log(2) - 3)*log(x))

________________________________________________________________________________________

mupad [B]  time = 1.32, size = 17, normalized size = 0.81 x+ex2ln(x)(ln(6)3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x^2) + log(x)^2*(3*x - x*log(6)) - 2*x^2*exp(x^2)*log(x))/(log(x)^2*(3*x - x*log(6))),x)

[Out]

x + exp(x^2)/(log(x)*(log(6) - 3))

________________________________________________________________________________________

sympy [A]  time = 0.27, size = 17, normalized size = 0.81 x+ex23log(x)+log(6)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x*ln(6)-3*x)*ln(x)**2+2*x**2*exp(x**2)*ln(x)-exp(x**2))/(x*ln(6)-3*x)/ln(x)**2,x)

[Out]

x + exp(x**2)/(-3*log(x) + log(6)*log(x))

________________________________________________________________________________________