Optimal. Leaf size=20 \[ e^{\frac {21}{4 x}-\log (5) \log \left (2+x^2\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.55, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {1593, 6706} \begin {gather*} e^{\left .\frac {21}{4}\right /x} 5^{-\log \left (x^2+2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {21-4 x \log (5) \log \left (2+x^2\right )}{4 x}} \left (-42-21 x^2-8 x^3 \log (5)\right )}{x^2 \left (8+4 x^2\right )} \, dx\\ &=5^{-\log \left (2+x^2\right )} e^{\left .\frac {21}{4}\right /x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 20, normalized size = 1.00 \begin {gather*} e^{\frac {21}{4 x}-\log (5) \log \left (2+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 19, normalized size = 0.95 \begin {gather*} e^{\left (-\frac {4 \, x \log \relax (5) \log \left (x^{2} + 2\right ) - 21}{4 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 17, normalized size = 0.85 \begin {gather*} e^{\left (-\log \relax (5) \log \left (x^{2} + 2\right ) + \frac {21}{4 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 18, normalized size = 0.90
method | result | size |
risch | \(\left (x^{2}+2\right )^{-\ln \relax (5)} {\mathrm e}^{\frac {21}{4 x}}\) | \(18\) |
gosper | \({\mathrm e}^{-\frac {4 x \ln \relax (5) \ln \left (x^{2}+2\right )-21}{4 x}}\) | \(20\) |
norman | \({\mathrm e}^{\frac {-4 x \ln \relax (5) \ln \left (x^{2}+2\right )+21}{4 x}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 17, normalized size = 0.85 \begin {gather*} e^{\left (-\log \relax (5) \log \left (x^{2} + 2\right ) + \frac {21}{4 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.43, size = 17, normalized size = 0.85 \begin {gather*} \frac {{\mathrm {e}}^{\frac {21}{4\,x}}}{{\left (x^2+2\right )}^{\ln \relax (5)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.57, size = 17, normalized size = 0.85 \begin {gather*} e^{\frac {- x \log {\relax (5 )} \log {\left (x^{2} + 2 \right )} + \frac {21}{4}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________