3.18.14 e214xlog(5)log(2+x2)4x(4221x28x3log(5))8x2+4x4dx

Optimal. Leaf size=20 e214xlog(5)log(2+x2)

________________________________________________________________________________________

Rubi [A]  time = 0.55, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 50, number of rulesintegrand size = 0.040, Rules used = {1593, 6706} e214/x5log(x2+2)

Antiderivative was successfully verified.

[In]

Int[(E^((21 - 4*x*Log[5]*Log[2 + x^2])/(4*x))*(-42 - 21*x^2 - 8*x^3*Log[5]))/(8*x^2 + 4*x^4),x]

[Out]

E^(21/(4*x))/5^Log[2 + x^2]

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

integral=e214xlog(5)log(2+x2)4x(4221x28x3log(5))x2(8+4x2)dx=5log(2+x2)e214/x

________________________________________________________________________________________

Mathematica [A]  time = 0.22, size = 20, normalized size = 1.00 e214xlog(5)log(2+x2)

Antiderivative was successfully verified.

[In]

Integrate[(E^((21 - 4*x*Log[5]*Log[2 + x^2])/(4*x))*(-42 - 21*x^2 - 8*x^3*Log[5]))/(8*x^2 + 4*x^4),x]

[Out]

E^(21/(4*x) - Log[5]*Log[2 + x^2])

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 19, normalized size = 0.95 e(4xlog(5)log(x2+2)214x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-8*x^3*log(5)-21*x^2-42)*exp(1/4*(-4*x*log(5)*log(x^2+2)+21)/x)/(4*x^4+8*x^2),x, algorithm="fricas"
)

[Out]

e^(-1/4*(4*x*log(5)*log(x^2 + 2) - 21)/x)

________________________________________________________________________________________

giac [A]  time = 0.20, size = 17, normalized size = 0.85 e(log(5)log(x2+2)+214x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-8*x^3*log(5)-21*x^2-42)*exp(1/4*(-4*x*log(5)*log(x^2+2)+21)/x)/(4*x^4+8*x^2),x, algorithm="giac")

[Out]

e^(-log(5)*log(x^2 + 2) + 21/4/x)

________________________________________________________________________________________

maple [A]  time = 0.27, size = 18, normalized size = 0.90




method result size



risch (x2+2)ln(5)e214x 18
gosper e4xln(5)ln(x2+2)214x 20
norman e4xln(5)ln(x2+2)+214x 20



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-8*x^3*ln(5)-21*x^2-42)*exp(1/4*(-4*x*ln(5)*ln(x^2+2)+21)/x)/(4*x^4+8*x^2),x,method=_RETURNVERBOSE)

[Out]

(x^2+2)^(-ln(5))*exp(21/4/x)

________________________________________________________________________________________

maxima [A]  time = 0.65, size = 17, normalized size = 0.85 e(log(5)log(x2+2)+214x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-8*x^3*log(5)-21*x^2-42)*exp(1/4*(-4*x*log(5)*log(x^2+2)+21)/x)/(4*x^4+8*x^2),x, algorithm="maxima"
)

[Out]

e^(-log(5)*log(x^2 + 2) + 21/4/x)

________________________________________________________________________________________

mupad [B]  time = 1.43, size = 17, normalized size = 0.85 e214x(x2+2)ln(5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(-(x*log(5)*log(x^2 + 2) - 21/4)/x)*(8*x^3*log(5) + 21*x^2 + 42))/(8*x^2 + 4*x^4),x)

[Out]

exp(21/(4*x))/(x^2 + 2)^log(5)

________________________________________________________________________________________

sympy [A]  time = 0.57, size = 17, normalized size = 0.85 exlog(5)log(x2+2)+214x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-8*x**3*ln(5)-21*x**2-42)*exp(1/4*(-4*x*ln(5)*ln(x**2+2)+21)/x)/(4*x**4+8*x**2),x)

[Out]

exp((-x*log(5)*log(x**2 + 2) + 21/4)/x)

________________________________________________________________________________________