3.18.15
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [F] time = 8.11, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^((36 + 12*Log[4/x])/(x*Log[x/E^(E^4*x)]))*(-36 + 36*E^4*x + (-12 + 12*E^4*x)*Log[4/x] + (-48 - 12*Log[4
/x])*Log[x/E^(E^4*x)]))/(x^2*Log[x/E^(E^4*x)]^2),x]
[Out]
-36*Defer[Int][E^((12*(3 + Log[4/x]))/(x*Log[x/E^(E^4*x)]))/(x^2*Log[x/E^(E^4*x)]^2), x] + 36*Defer[Int][E^(4
+ (12*(3 + Log[4/x]))/(x*Log[x/E^(E^4*x)]))/(x*Log[x/E^(E^4*x)]^2), x] - 12*Defer[Int][(E^((12*(3 + Log[4/x]))
/(x*Log[x/E^(E^4*x)]))*Log[4/x])/(x^2*Log[x/E^(E^4*x)]^2), x] + 12*Defer[Int][(E^(4 + (12*(3 + Log[4/x]))/(x*L
og[x/E^(E^4*x)]))*Log[4/x])/(x*Log[x/E^(E^4*x)]^2), x] - 48*Defer[Int][E^((12*(3 + Log[4/x]))/(x*Log[x/E^(E^4*
x)]))/(x^2*Log[x/E^(E^4*x)]), x] - 12*Defer[Int][(E^((12*(3 + Log[4/x]))/(x*Log[x/E^(E^4*x)]))*Log[4/x])/(x^2*
Log[x/E^(E^4*x)]), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 28, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(E^((36 + 12*Log[4/x])/(x*Log[x/E^(E^4*x)]))*(-36 + 36*E^4*x + (-12 + 12*E^4*x)*Log[4/x] + (-48 - 12
*Log[4/x])*Log[x/E^(E^4*x)]))/(x^2*Log[x/E^(E^4*x)]^2),x]
[Out]
E^((12*(3 + Log[4/x]))/(x*Log[x/E^(E^4*x)]))
________________________________________________________________________________________
fricas [A] time = 0.69, size = 33, normalized size = 1.18
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-12*log(4/x)-48)*log(x/exp(x*exp(4)))+(12*x*exp(4)-12)*log(4/x)+36*x*exp(4)-36)*exp((12*log(4/x)+3
6)/x/log(x/exp(x*exp(4))))/x^2/log(x/exp(x*exp(4)))^2,x, algorithm="fricas")
[Out]
e^(-12*(log(4/x) + 3)/(x^2*e^4 - 2*x*log(2) + x*log(4/x)))
________________________________________________________________________________________
giac [A] time = 1.29, size = 40, normalized size = 1.43
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-12*log(4/x)-48)*log(x/exp(x*exp(4)))+(12*x*exp(4)-12)*log(4/x)+36*x*exp(4)-36)*exp((12*log(4/x)+3
6)/x/log(x/exp(x*exp(4))))/x^2/log(x/exp(x*exp(4)))^2,x, algorithm="giac")
[Out]
e^(12*log(4/x)/(x*log(x*e^(-x*e^4))) + 36/(x*log(x*e^(-x*e^4))))
________________________________________________________________________________________
maple [C] time = 0.77, size = 128, normalized size = 4.57
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-12*ln(4/x)-48)*ln(x/exp(x*exp(4)))+(12*x*exp(4)-12)*ln(4/x)+36*x*exp(4)-36)*exp((12*ln(4/x)+36)/x/ln(x/
exp(x*exp(4))))/x^2/ln(x/exp(x*exp(4)))^2,x,method=_RETURNVERBOSE)
[Out]
exp(24*(2*ln(2)-ln(x)+3)/x/(-I*csgn(I*x*exp(-x*exp(4)))^3*Pi+I*csgn(I*x*exp(-x*exp(4)))^2*csgn(I*x)*Pi+I*csgn(
I*x*exp(-x*exp(4)))^2*csgn(I*exp(-x*exp(4)))*Pi-I*csgn(I*x*exp(-x*exp(4)))*csgn(I*x)*csgn(I*exp(-x*exp(4)))*Pi
+2*ln(x)-2*ln(exp(x*exp(4)))))
________________________________________________________________________________________
maxima [B] time = 0.86, size = 82, normalized size = 2.93
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-12*log(4/x)-48)*log(x/exp(x*exp(4)))+(12*x*exp(4)-12)*log(4/x)+36*x*exp(4)-36)*exp((12*log(4/x)+3
6)/x/log(x/exp(x*exp(4))))/x^2/log(x/exp(x*exp(4)))^2,x, algorithm="maxima")
[Out]
e^(-24*e^4*log(2)/(x*e^4*log(x) - log(x)^2) - 36*e^4/(x*e^4*log(x) - log(x)^2) + 12*e^4/(x*e^4 - log(x)) - 12/
x + 24*log(2)/(x*log(x)) + 36/(x*log(x)))
________________________________________________________________________________________
mupad [B] time = 1.66, size = 60, normalized size = 2.14
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp((12*log(4/x) + 36)/(x*log(x*exp(-x*exp(4)))))*(36*x*exp(4) + log(4/x)*(12*x*exp(4) - 12) - log(x*exp(
-x*exp(4)))*(12*log(4/x) + 48) - 36))/(x^2*log(x*exp(-x*exp(4)))^2),x)
[Out]
exp(-36/(x^2*exp(4) - x*log(x)))/(2^(24/(x^2*exp(4) - x*log(x)))*(1/x)^(12/(x^2*exp(4) - x*log(x))))
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-12*ln(4/x)-48)*ln(x/exp(x*exp(4)))+(12*x*exp(4)-12)*ln(4/x)+36*x*exp(4)-36)*exp((12*ln(4/x)+36)/x
/ln(x/exp(x*exp(4))))/x**2/ln(x/exp(x*exp(4)))**2,x)
[Out]
Timed out
________________________________________________________________________________________