3.18.15 e36+12log(4x)xlog(ee4xx)(36+36e4x+(12+12e4x)log(4x)+(4812log(4x))log(ee4xx))x2log2(ee4xx)dx

Optimal. Leaf size=28 e12(3+log(4x))xlog(ee4xx)

________________________________________________________________________________________

Rubi [F]  time = 8.11, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e36+12log(4x)xlog(ee4xx)(36+36e4x+(12+12e4x)log(4x)+(4812log(4x))log(ee4xx))x2log2(ee4xx)dx

Verification is not applicable to the result.

[In]

Int[(E^((36 + 12*Log[4/x])/(x*Log[x/E^(E^4*x)]))*(-36 + 36*E^4*x + (-12 + 12*E^4*x)*Log[4/x] + (-48 - 12*Log[4
/x])*Log[x/E^(E^4*x)]))/(x^2*Log[x/E^(E^4*x)]^2),x]

[Out]

-36*Defer[Int][E^((12*(3 + Log[4/x]))/(x*Log[x/E^(E^4*x)]))/(x^2*Log[x/E^(E^4*x)]^2), x] + 36*Defer[Int][E^(4
+ (12*(3 + Log[4/x]))/(x*Log[x/E^(E^4*x)]))/(x*Log[x/E^(E^4*x)]^2), x] - 12*Defer[Int][(E^((12*(3 + Log[4/x]))
/(x*Log[x/E^(E^4*x)]))*Log[4/x])/(x^2*Log[x/E^(E^4*x)]^2), x] + 12*Defer[Int][(E^(4 + (12*(3 + Log[4/x]))/(x*L
og[x/E^(E^4*x)]))*Log[4/x])/(x*Log[x/E^(E^4*x)]^2), x] - 48*Defer[Int][E^((12*(3 + Log[4/x]))/(x*Log[x/E^(E^4*
x)]))/(x^2*Log[x/E^(E^4*x)]), x] - 12*Defer[Int][(E^((12*(3 + Log[4/x]))/(x*Log[x/E^(E^4*x)]))*Log[4/x])/(x^2*
Log[x/E^(E^4*x)]), x]

Rubi steps

integral=e12(3+log(4x))xlog(ee4xx)(36+36e4x+(12+12e4x)log(4x)+(4812log(4x))log(ee4xx))x2log2(ee4xx)dx=(12e12(3+log(4x))xlog(ee4xx)(1+e4x)(3+log(4x))x2log2(ee4xx)12e12(3+log(4x))xlog(ee4xx)(4+log(4x))x2log(ee4xx))dx=12e12(3+log(4x))xlog(ee4xx)(1+e4x)(3+log(4x))x2log2(ee4xx)dx12e12(3+log(4x))xlog(ee4xx)(4+log(4x))x2log(ee4xx)dx=12(e12(3+log(4x))xlog(ee4xx)(3log(4x))x2log2(ee4xx)+e4+12(3+log(4x))xlog(ee4xx)(3+log(4x))xlog2(ee4xx))dx12(4e12(3+log(4x))xlog(ee4xx)x2log(ee4xx)+e12(3+log(4x))xlog(ee4xx)log(4x)x2log(ee4xx))dx=12e12(3+log(4x))xlog(ee4xx)(3log(4x))x2log2(ee4xx)dx+12e4+12(3+log(4x))xlog(ee4xx)(3+log(4x))xlog2(ee4xx)dx12e12(3+log(4x))xlog(ee4xx)log(4x)x2log(ee4xx)dx48e12(3+log(4x))xlog(ee4xx)x2log(ee4xx)dx=12(3e12(3+log(4x))xlog(ee4xx)x2log2(ee4xx)e12(3+log(4x))xlog(ee4xx)log(4x)x2log2(ee4xx))dx+12(3e4+12(3+log(4x))xlog(ee4xx)xlog2(ee4xx)+e4+12(3+log(4x))xlog(ee4xx)log(4x)xlog2(ee4xx))dx12e12(3+log(4x))xlog(ee4xx)log(4x)x2log(ee4xx)dx48e12(3+log(4x))xlog(ee4xx)x2log(ee4xx)dx=(12e12(3+log(4x))xlog(ee4xx)log(4x)x2log2(ee4xx)dx)+12e4+12(3+log(4x))xlog(ee4xx)log(4x)xlog2(ee4xx)dx12e12(3+log(4x))xlog(ee4xx)log(4x)x2log(ee4xx)dx36e12(3+log(4x))xlog(ee4xx)x2log2(ee4xx)dx+36e4+12(3+log(4x))xlog(ee4xx)xlog2(ee4xx)dx48e12(3+log(4x))xlog(ee4xx)x2log(ee4xx)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 28, normalized size = 1.00 e12(3+log(4x))xlog(ee4xx)

Antiderivative was successfully verified.

[In]

Integrate[(E^((36 + 12*Log[4/x])/(x*Log[x/E^(E^4*x)]))*(-36 + 36*E^4*x + (-12 + 12*E^4*x)*Log[4/x] + (-48 - 12
*Log[4/x])*Log[x/E^(E^4*x)]))/(x^2*Log[x/E^(E^4*x)]^2),x]

[Out]

E^((12*(3 + Log[4/x]))/(x*Log[x/E^(E^4*x)]))

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 33, normalized size = 1.18 e(12(log(4x)+3)x2e42xlog(2)+xlog(4x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-12*log(4/x)-48)*log(x/exp(x*exp(4)))+(12*x*exp(4)-12)*log(4/x)+36*x*exp(4)-36)*exp((12*log(4/x)+3
6)/x/log(x/exp(x*exp(4))))/x^2/log(x/exp(x*exp(4)))^2,x, algorithm="fricas")

[Out]

e^(-12*(log(4/x) + 3)/(x^2*e^4 - 2*x*log(2) + x*log(4/x)))

________________________________________________________________________________________

giac [A]  time = 1.29, size = 40, normalized size = 1.43 e(12log(4x)xlog(xe(xe4))+36xlog(xe(xe4)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-12*log(4/x)-48)*log(x/exp(x*exp(4)))+(12*x*exp(4)-12)*log(4/x)+36*x*exp(4)-36)*exp((12*log(4/x)+3
6)/x/log(x/exp(x*exp(4))))/x^2/log(x/exp(x*exp(4)))^2,x, algorithm="giac")

[Out]

e^(12*log(4/x)/(x*log(x*e^(-x*e^4))) + 36/(x*log(x*e^(-x*e^4))))

________________________________________________________________________________________

maple [C]  time = 0.77, size = 128, normalized size = 4.57




method result size



risch e48ln(2)24ln(x)+72x(icsgn(ixexe4)3π+icsgn(ixexe4)2csgn(ix)π+icsgn(ixexe4)2csgn(iexe4)πicsgn(ixexe4)csgn(ix)csgn(iexe4)π+2ln(x)2ln(exe4)) 128



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-12*ln(4/x)-48)*ln(x/exp(x*exp(4)))+(12*x*exp(4)-12)*ln(4/x)+36*x*exp(4)-36)*exp((12*ln(4/x)+36)/x/ln(x/
exp(x*exp(4))))/x^2/ln(x/exp(x*exp(4)))^2,x,method=_RETURNVERBOSE)

[Out]

exp(24*(2*ln(2)-ln(x)+3)/x/(-I*csgn(I*x*exp(-x*exp(4)))^3*Pi+I*csgn(I*x*exp(-x*exp(4)))^2*csgn(I*x)*Pi+I*csgn(
I*x*exp(-x*exp(4)))^2*csgn(I*exp(-x*exp(4)))*Pi-I*csgn(I*x*exp(-x*exp(4)))*csgn(I*x)*csgn(I*exp(-x*exp(4)))*Pi
+2*ln(x)-2*ln(exp(x*exp(4)))))

________________________________________________________________________________________

maxima [B]  time = 0.86, size = 82, normalized size = 2.93 e(24e4log(2)xe4log(x)log(x)236e4xe4log(x)log(x)2+12e4xe4log(x)12x+24log(2)xlog(x)+36xlog(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-12*log(4/x)-48)*log(x/exp(x*exp(4)))+(12*x*exp(4)-12)*log(4/x)+36*x*exp(4)-36)*exp((12*log(4/x)+3
6)/x/log(x/exp(x*exp(4))))/x^2/log(x/exp(x*exp(4)))^2,x, algorithm="maxima")

[Out]

e^(-24*e^4*log(2)/(x*e^4*log(x) - log(x)^2) - 36*e^4/(x*e^4*log(x) - log(x)^2) + 12*e^4/(x*e^4 - log(x)) - 12/
x + 24*log(2)/(x*log(x)) + 36/(x*log(x)))

________________________________________________________________________________________

mupad [B]  time = 1.66, size = 60, normalized size = 2.14 e36x2e4xln(x)224x2e4xln(x)(1x)12x2e4xln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp((12*log(4/x) + 36)/(x*log(x*exp(-x*exp(4)))))*(36*x*exp(4) + log(4/x)*(12*x*exp(4) - 12) - log(x*exp(
-x*exp(4)))*(12*log(4/x) + 48) - 36))/(x^2*log(x*exp(-x*exp(4)))^2),x)

[Out]

exp(-36/(x^2*exp(4) - x*log(x)))/(2^(24/(x^2*exp(4) - x*log(x)))*(1/x)^(12/(x^2*exp(4) - x*log(x))))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-12*ln(4/x)-48)*ln(x/exp(x*exp(4)))+(12*x*exp(4)-12)*ln(4/x)+36*x*exp(4)-36)*exp((12*ln(4/x)+36)/x
/ln(x/exp(x*exp(4))))/x**2/ln(x/exp(x*exp(4)))**2,x)

[Out]

Timed out

________________________________________________________________________________________