Optimal. Leaf size=33 \[ x^2+\frac {4}{\log \left ((-1+x)^2\right )+\frac {-x+\log (x)}{\log (x)-\log (3+x)}} \]
________________________________________________________________________________________
Rubi [F] time = 73.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {12 x-12 x^2-6 x^4+4 x^5+2 x^6+\left (-8 x+4 x^2+16 x^3-8 x^4-4 x^5\right ) \log (x)+\left (-24 x-14 x^2+4 x^3+2 x^4\right ) \log ^2(x)+\left (-12+20 x-4 x^2-4 x^3+\left (48 x+16 x^2\right ) \log (x)\right ) \log (3+x)+\left (-24 x-8 x^2\right ) \log ^2(3+x)+\left (\left (12 x^3-8 x^4-4 x^5\right ) \log (x)+\left (-12 x^2+8 x^3+4 x^4\right ) \log ^2(x)+\left (-12 x^3+8 x^4+4 x^5+\left (12 x^2-8 x^3-4 x^4\right ) \log (x)\right ) \log (3+x)\right ) \log \left (1-2 x+x^2\right )+\left (\left (-6 x^2+4 x^3+2 x^4\right ) \log ^2(x)+\left (12 x^2-8 x^3-4 x^4\right ) \log (x) \log (3+x)+\left (-6 x^2+4 x^3+2 x^4\right ) \log ^2(3+x)\right ) \log ^2\left (1-2 x+x^2\right )}{-3 x^3+2 x^4+x^5+\left (6 x^2-4 x^3-2 x^4\right ) \log (x)+\left (-3 x+2 x^2+x^3\right ) \log ^2(x)+\left (\left (6 x^2-4 x^3-2 x^4\right ) \log (x)+\left (-6 x+4 x^2+2 x^3\right ) \log ^2(x)+\left (-6 x^2+4 x^3+2 x^4+\left (6 x-4 x^2-2 x^3\right ) \log (x)\right ) \log (3+x)\right ) \log \left (1-2 x+x^2\right )+\left (\left (-3 x+2 x^2+x^3\right ) \log ^2(x)+\left (6 x-4 x^2-2 x^3\right ) \log (x) \log (3+x)+\left (-3 x+2 x^2+x^3\right ) \log ^2(3+x)\right ) \log ^2\left (1-2 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (-x \left (6-6 x-3 x^3+2 x^4+x^5\right )-x (3+x) \left (-4-x+x^2+2 (-1+x) x \log \left ((-1+x)^2\right )+(-1+x) x \log ^2\left ((-1+x)^2\right )\right ) \log ^2(x)-2 \left (-3+2 x+x^2\right ) \left (1-x+x^3 \log \left ((-1+x)^2\right )\right ) \log (3+x)-x (3+x) \left (-4+(-1+x) x \log ^2\left ((-1+x)^2\right )\right ) \log ^2(3+x)+2 x \log (x) \left (2-x-4 x^2+2 x^3+x^4-12 \log (3+x)-4 x \log (3+x)+x \left (-3+2 x+x^2\right ) \log ^2\left ((-1+x)^2\right ) \log (3+x)+x \left (-3+2 x+x^2\right ) \log \left ((-1+x)^2\right ) (x+\log (3+x))\right )\right )}{x \left (3-2 x-x^2\right ) \left (x-\left (1+\log \left ((-1+x)^2\right )\right ) \log (x)+\log \left ((-1+x)^2\right ) \log (3+x)\right )^2} \, dx\\ &=2 \int \frac {-x \left (6-6 x-3 x^3+2 x^4+x^5\right )-x (3+x) \left (-4-x+x^2+2 (-1+x) x \log \left ((-1+x)^2\right )+(-1+x) x \log ^2\left ((-1+x)^2\right )\right ) \log ^2(x)-2 \left (-3+2 x+x^2\right ) \left (1-x+x^3 \log \left ((-1+x)^2\right )\right ) \log (3+x)-x (3+x) \left (-4+(-1+x) x \log ^2\left ((-1+x)^2\right )\right ) \log ^2(3+x)+2 x \log (x) \left (2-x-4 x^2+2 x^3+x^4-12 \log (3+x)-4 x \log (3+x)+x \left (-3+2 x+x^2\right ) \log ^2\left ((-1+x)^2\right ) \log (3+x)+x \left (-3+2 x+x^2\right ) \log \left ((-1+x)^2\right ) (x+\log (3+x))\right )}{x \left (3-2 x-x^2\right ) \left (x-\left (1+\log \left ((-1+x)^2\right )\right ) \log (x)+\log \left ((-1+x)^2\right ) \log (3+x)\right )^2} \, dx\\ &=2 \int \left (\frac {-4-x \log ^2\left ((-1+x)^2\right )+x^2 \log ^2\left ((-1+x)^2\right )}{(-1+x) \log ^2\left ((-1+x)^2\right )}+\frac {2 (x-\log (x)) \left (-6 x^2-2 x^3+3 \log \left ((-1+x)^2\right )-5 x \log \left ((-1+x)^2\right )+x^2 \log \left ((-1+x)^2\right )+x^3 \log \left ((-1+x)^2\right )+3 \log ^2\left ((-1+x)^2\right )-3 x \log ^2\left ((-1+x)^2\right )+6 x \log (x)+2 x^2 \log (x)\right )}{(-1+x) x (3+x) \log ^2\left ((-1+x)^2\right ) \left (x-\log (x)-\log \left ((-1+x)^2\right ) \log (x)+\log \left ((-1+x)^2\right ) \log (3+x)\right )^2}-\frac {2 \left (-4 x^2+\log \left ((-1+x)^2\right )-2 x \log \left ((-1+x)^2\right )+x^2 \log \left ((-1+x)^2\right )+4 x \log (x)\right )}{(-1+x) x \log ^2\left ((-1+x)^2\right ) \left (x-\log (x)-\log \left ((-1+x)^2\right ) \log (x)+\log \left ((-1+x)^2\right ) \log (3+x)\right )}\right ) \, dx\\ &=2 \int \frac {-4-x \log ^2\left ((-1+x)^2\right )+x^2 \log ^2\left ((-1+x)^2\right )}{(-1+x) \log ^2\left ((-1+x)^2\right )} \, dx+4 \int \frac {(x-\log (x)) \left (-6 x^2-2 x^3+3 \log \left ((-1+x)^2\right )-5 x \log \left ((-1+x)^2\right )+x^2 \log \left ((-1+x)^2\right )+x^3 \log \left ((-1+x)^2\right )+3 \log ^2\left ((-1+x)^2\right )-3 x \log ^2\left ((-1+x)^2\right )+6 x \log (x)+2 x^2 \log (x)\right )}{(-1+x) x (3+x) \log ^2\left ((-1+x)^2\right ) \left (x-\log (x)-\log \left ((-1+x)^2\right ) \log (x)+\log \left ((-1+x)^2\right ) \log (3+x)\right )^2} \, dx-4 \int \frac {-4 x^2+\log \left ((-1+x)^2\right )-2 x \log \left ((-1+x)^2\right )+x^2 \log \left ((-1+x)^2\right )+4 x \log (x)}{(-1+x) x \log ^2\left ((-1+x)^2\right ) \left (x-\log (x)-\log \left ((-1+x)^2\right ) \log (x)+\log \left ((-1+x)^2\right ) \log (3+x)\right )} \, dx\\ &=2 \int \left (x-\frac {4}{(-1+x) \log ^2\left ((-1+x)^2\right )}\right ) \, dx+4 \int \frac {\left ((-1+x)^2 (3+x) \log \left ((-1+x)^2\right )-3 (-1+x) \log ^2\left ((-1+x)^2\right )-2 x (3+x) (x-\log (x))\right ) (-x+\log (x))}{(1-x) x (3+x) \log ^2\left ((-1+x)^2\right ) \left (x-\left (1+\log \left ((-1+x)^2\right )\right ) \log (x)+\log \left ((-1+x)^2\right ) \log (3+x)\right )^2} \, dx-4 \int \left (\frac {4 x^2-\log \left ((-1+x)^2\right )+2 x \log \left ((-1+x)^2\right )-x^2 \log \left ((-1+x)^2\right )-4 x \log (x)}{x \log ^2\left ((-1+x)^2\right ) \left (x-\log (x)-\log \left ((-1+x)^2\right ) \log (x)+\log \left ((-1+x)^2\right ) \log (3+x)\right )}+\frac {-4 x^2+\log \left ((-1+x)^2\right )-2 x \log \left ((-1+x)^2\right )+x^2 \log \left ((-1+x)^2\right )+4 x \log (x)}{(-1+x) \log ^2\left ((-1+x)^2\right ) \left (x-\log (x)-\log \left ((-1+x)^2\right ) \log (x)+\log \left ((-1+x)^2\right ) \log (3+x)\right )}\right ) \, dx\\ &=x^2-4 \int \frac {4 x^2-\log \left ((-1+x)^2\right )+2 x \log \left ((-1+x)^2\right )-x^2 \log \left ((-1+x)^2\right )-4 x \log (x)}{x \log ^2\left ((-1+x)^2\right ) \left (x-\log (x)-\log \left ((-1+x)^2\right ) \log (x)+\log \left ((-1+x)^2\right ) \log (3+x)\right )} \, dx-4 \int \frac {-4 x^2+\log \left ((-1+x)^2\right )-2 x \log \left ((-1+x)^2\right )+x^2 \log \left ((-1+x)^2\right )+4 x \log (x)}{(-1+x) \log ^2\left ((-1+x)^2\right ) \left (x-\log (x)-\log \left ((-1+x)^2\right ) \log (x)+\log \left ((-1+x)^2\right ) \log (3+x)\right )} \, dx+4 \int \left (\frac {(x-\log (x)) \left (-6 x^2-2 x^3+3 \log \left ((-1+x)^2\right )-5 x \log \left ((-1+x)^2\right )+x^2 \log \left ((-1+x)^2\right )+x^3 \log \left ((-1+x)^2\right )+3 \log ^2\left ((-1+x)^2\right )-3 x \log ^2\left ((-1+x)^2\right )+6 x \log (x)+2 x^2 \log (x)\right )}{4 (-1+x) \log ^2\left ((-1+x)^2\right ) \left (x-\log (x)-\log \left ((-1+x)^2\right ) \log (x)+\log \left ((-1+x)^2\right ) \log (3+x)\right )^2}-\frac {(x-\log (x)) \left (-6 x^2-2 x^3+3 \log \left ((-1+x)^2\right )-5 x \log \left ((-1+x)^2\right )+x^2 \log \left ((-1+x)^2\right )+x^3 \log \left ((-1+x)^2\right )+3 \log ^2\left ((-1+x)^2\right )-3 x \log ^2\left ((-1+x)^2\right )+6 x \log (x)+2 x^2 \log (x)\right )}{3 x \log ^2\left ((-1+x)^2\right ) \left (x-\log (x)-\log \left ((-1+x)^2\right ) \log (x)+\log \left ((-1+x)^2\right ) \log (3+x)\right )^2}+\frac {(x-\log (x)) \left (-6 x^2-2 x^3+3 \log \left ((-1+x)^2\right )-5 x \log \left ((-1+x)^2\right )+x^2 \log \left ((-1+x)^2\right )+x^3 \log \left ((-1+x)^2\right )+3 \log ^2\left ((-1+x)^2\right )-3 x \log ^2\left ((-1+x)^2\right )+6 x \log (x)+2 x^2 \log (x)\right )}{12 (3+x) \log ^2\left ((-1+x)^2\right ) \left (x-\log (x)-\log \left ((-1+x)^2\right ) \log (x)+\log \left ((-1+x)^2\right ) \log (3+x)\right )^2}\right ) \, dx-8 \int \frac {1}{(-1+x) \log ^2\left ((-1+x)^2\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 49, normalized size = 1.48 \begin {gather*} 2 \left (\frac {x^2}{2}+\frac {-2 \log (x)+2 \log (3+x)}{x-\left (1+\log \left ((-1+x)^2\right )\right ) \log (x)+\log \left ((-1+x)^2\right ) \log (3+x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.73, size = 73, normalized size = 2.21 \begin {gather*} \frac {x^{3} + {\left (x^{2} \log \left (x + 3\right ) - x^{2} \log \relax (x)\right )} \log \left (x^{2} - 2 \, x + 1\right ) - {\left (x^{2} + 4\right )} \log \relax (x) + 4 \, \log \left (x + 3\right )}{{\left (\log \left (x + 3\right ) - \log \relax (x)\right )} \log \left (x^{2} - 2 \, x + 1\right ) + x - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 3.71, size = 50, normalized size = 1.52 \begin {gather*} x^{2} + \frac {4 \, {\left (\log \left (x + 3\right ) - \log \relax (x)\right )}}{\log \left (x^{2} - 2 \, x + 1\right ) \log \left (x + 3\right ) - \log \left (x^{2} - 2 \, x + 1\right ) \log \relax (x) + x - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.15, size = 177, normalized size = 5.36
method | result | size |
risch | \(x^{2}+\frac {8 i \left (\ln \relax (x )-\ln \left (3+x \right )\right )}{\pi \mathrm {csgn}\left (i \left (x -1\right )\right )^{2} \mathrm {csgn}\left (i \left (x -1\right )^{2}\right ) \ln \relax (x )-\pi \mathrm {csgn}\left (i \left (x -1\right )\right )^{2} \mathrm {csgn}\left (i \left (x -1\right )^{2}\right ) \ln \left (3+x \right )-2 \pi \,\mathrm {csgn}\left (i \left (x -1\right )\right ) \mathrm {csgn}\left (i \left (x -1\right )^{2}\right )^{2} \ln \relax (x )+2 \pi \,\mathrm {csgn}\left (i \left (x -1\right )\right ) \mathrm {csgn}\left (i \left (x -1\right )^{2}\right )^{2} \ln \left (3+x \right )+\pi \mathrm {csgn}\left (i \left (x -1\right )^{2}\right )^{3} \ln \relax (x )-\pi \mathrm {csgn}\left (i \left (x -1\right )^{2}\right )^{3} \ln \left (3+x \right )+4 i \ln \relax (x ) \ln \left (x -1\right )-4 i \ln \left (3+x \right ) \ln \left (x -1\right )-2 i x +2 i \ln \relax (x )}\) | \(177\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.68, size = 69, normalized size = 2.09 \begin {gather*} -\frac {2 \, x^{2} \log \left (x - 1\right ) \log \relax (x) - x^{3} - 2 \, {\left (x^{2} \log \left (x - 1\right ) + 2\right )} \log \left (x + 3\right ) + {\left (x^{2} + 4\right )} \log \relax (x)}{2 \, \log \left (x + 3\right ) \log \left (x - 1\right ) - 2 \, \log \left (x - 1\right ) \log \relax (x) + x - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.19, size = 51, normalized size = 1.55 \begin {gather*} x^2+\frac {4\,\ln \left (x+3\right )-4\,\ln \relax (x)}{x-\ln \relax (x)+\ln \left (x+3\right )\,\ln \left (x^2-2\,x+1\right )-\ln \left (x^2-2\,x+1\right )\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.90, size = 37, normalized size = 1.12 \begin {gather*} x^{2} + \frac {4 \log {\relax (x )} - 4 \log {\left (x + 3 \right )}}{- x + \left (\log {\relax (x )} - \log {\left (x + 3 \right )}\right ) \log {\left (x^{2} - 2 x + 1 \right )} + \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________