Optimal. Leaf size=21 \[ e^{x \left (-\frac {1}{4}+\frac {1}{6} e^x \left (3+\log \left (x^2\right )\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{12} e^{\frac {1}{12} \left (-3 x+6 e^x x+2 e^x x \log \left (x^2\right )\right )} \left (-3+e^x (10+6 x)+e^x (2+2 x) \log \left (x^2\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{12} \int e^{\frac {1}{12} \left (-3 x+6 e^x x+2 e^x x \log \left (x^2\right )\right )} \left (-3+e^x (10+6 x)+e^x (2+2 x) \log \left (x^2\right )\right ) \, dx\\ &=\frac {1}{12} \int \left (-3 e^{\frac {1}{12} \left (-3 x+6 e^x x+2 e^x x \log \left (x^2\right )\right )}+2 \exp \left (x+\frac {1}{12} \left (-3 x+6 e^x x+2 e^x x \log \left (x^2\right )\right )\right ) (5+3 x)+2 \exp \left (x+\frac {1}{12} \left (-3 x+6 e^x x+2 e^x x \log \left (x^2\right )\right )\right ) (1+x) \log \left (x^2\right )\right ) \, dx\\ &=\frac {1}{6} \int \exp \left (x+\frac {1}{12} \left (-3 x+6 e^x x+2 e^x x \log \left (x^2\right )\right )\right ) (5+3 x) \, dx+\frac {1}{6} \int \exp \left (x+\frac {1}{12} \left (-3 x+6 e^x x+2 e^x x \log \left (x^2\right )\right )\right ) (1+x) \log \left (x^2\right ) \, dx-\frac {1}{4} \int e^{\frac {1}{12} \left (-3 x+6 e^x x+2 e^x x \log \left (x^2\right )\right )} \, dx\\ &=\frac {1}{6} \int e^{\frac {1}{12} x \left (9+6 e^x+2 e^x \log \left (x^2\right )\right )} (5+3 x) \, dx+\frac {1}{6} \int e^{\frac {1}{12} x \left (9+6 e^x+2 e^x \log \left (x^2\right )\right )} (1+x) \log \left (x^2\right ) \, dx-\frac {1}{4} \int e^{\frac {1}{12} \left (-3 x+6 e^x x+2 e^x x \log \left (x^2\right )\right )} \, dx\\ &=\frac {1}{6} \int \left (5 e^{\frac {1}{12} x \left (9+6 e^x+2 e^x \log \left (x^2\right )\right )}+3 e^{\frac {1}{12} x \left (9+6 e^x+2 e^x \log \left (x^2\right )\right )} x\right ) \, dx+\frac {1}{6} \int \left (e^{\frac {1}{12} x \left (9+6 e^x+2 e^x \log \left (x^2\right )\right )} \log \left (x^2\right )+e^{\frac {1}{12} x \left (9+6 e^x+2 e^x \log \left (x^2\right )\right )} x \log \left (x^2\right )\right ) \, dx-\frac {1}{4} \int e^{\frac {1}{12} \left (-3 x+6 e^x x+2 e^x x \log \left (x^2\right )\right )} \, dx\\ &=\frac {1}{6} \int e^{\frac {1}{12} x \left (9+6 e^x+2 e^x \log \left (x^2\right )\right )} \log \left (x^2\right ) \, dx+\frac {1}{6} \int e^{\frac {1}{12} x \left (9+6 e^x+2 e^x \log \left (x^2\right )\right )} x \log \left (x^2\right ) \, dx-\frac {1}{4} \int e^{\frac {1}{12} \left (-3 x+6 e^x x+2 e^x x \log \left (x^2\right )\right )} \, dx+\frac {1}{2} \int e^{\frac {1}{12} x \left (9+6 e^x+2 e^x \log \left (x^2\right )\right )} x \, dx+\frac {5}{6} \int e^{\frac {1}{12} x \left (9+6 e^x+2 e^x \log \left (x^2\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.37, size = 29, normalized size = 1.38 \begin {gather*} e^{-\frac {x}{4}+\frac {e^x x}{2}} \left (x^2\right )^{\frac {e^x x}{6}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 19, normalized size = 0.90 \begin {gather*} e^{\left (\frac {1}{6} \, x e^{x} \log \left (x^{2}\right ) + \frac {1}{2} \, x e^{x} - \frac {1}{4} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 19, normalized size = 0.90 \begin {gather*} e^{\left (\frac {1}{6} \, x e^{x} \log \left (x^{2}\right ) + \frac {1}{2} \, x e^{x} - \frac {1}{4} \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.35, size = 20, normalized size = 0.95
method | result | size |
default | \({\mathrm e}^{\frac {x \,{\mathrm e}^{x} \ln \left (x^{2}\right )}{6}+\frac {{\mathrm e}^{x} x}{2}-\frac {x}{4}}\) | \(20\) |
norman | \({\mathrm e}^{\frac {x \,{\mathrm e}^{x} \ln \left (x^{2}\right )}{6}+\frac {{\mathrm e}^{x} x}{2}-\frac {x}{4}}\) | \(20\) |
risch | \({\mathrm e}^{\frac {x \left (-i {\mathrm e}^{x} \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i {\mathrm e}^{x} \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )-i {\mathrm e}^{x} \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}+4 \,{\mathrm e}^{x} \ln \relax (x )+6 \,{\mathrm e}^{x}-3\right )}{12}}\) | \(72\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{12} \, \int {\left (2 \, {\left (x + 1\right )} e^{x} \log \left (x^{2}\right ) + 2 \, {\left (3 \, x + 5\right )} e^{x} - 3\right )} e^{\left (\frac {1}{6} \, x e^{x} \log \left (x^{2}\right ) + \frac {1}{2} \, x e^{x} - \frac {1}{4} \, x\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.26, size = 20, normalized size = 0.95 \begin {gather*} {\mathrm {e}}^{\frac {x\,{\mathrm {e}}^x}{2}-\frac {x}{4}}\,{\left (x^2\right )}^{\frac {x\,{\mathrm {e}}^x}{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 22, normalized size = 1.05 \begin {gather*} e^{\frac {x e^{x} \log {\left (x^{2} \right )}}{6} + \frac {x e^{x}}{2} - \frac {x}{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________