Optimal. Leaf size=27 \[ \frac {x^2}{4 \left (\frac {e^4}{\frac {2}{x}+x}+\log ^2(2)\right )} \]
________________________________________________________________________________________
Rubi [B] time = 0.33, antiderivative size = 99, normalized size of antiderivative = 3.67, number of steps used = 5, number of rules used = 4, integrand size = 96, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {6688, 12, 1644, 1586} \begin {gather*} \frac {x^2}{4 \log ^2(2)}-\frac {e^4 x \left (e^4 x \left (8-\frac {e^8}{\log ^4(2)}\right )-\frac {2 \left (e^8-8 \log ^4(2)\right )}{\log ^2(2)}\right )}{4 \left (e^8-8 \log ^4(2)\right ) \left (x^2 \log ^2(2)+e^4 x+2 \log ^2(2)\right )}-\frac {e^4 x}{4 \log ^4(2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1586
Rule 1644
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (2 e^4 x+3 e^4 x^3+8 \log ^2(2)+8 x^2 \log ^2(2)+2 x^4 \log ^2(2)\right )}{4 \left (e^4 x+2 \log ^2(2)+x^2 \log ^2(2)\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {x \left (2 e^4 x+3 e^4 x^3+8 \log ^2(2)+8 x^2 \log ^2(2)+2 x^4 \log ^2(2)\right )}{\left (e^4 x+2 \log ^2(2)+x^2 \log ^2(2)\right )^2} \, dx\\ &=-\frac {e^4 x \left (e^4 x \left (8-\frac {e^8}{\log ^4(2)}\right )-\frac {2 \left (e^8-8 \log ^4(2)\right )}{\log ^2(2)}\right )}{4 \left (e^4 x+2 \log ^2(2)+x^2 \log ^2(2)\right ) \left (e^8-8 \log ^4(2)\right )}-\frac {\int \frac {-x \left (12 e^8-\frac {e^{16}}{\log ^4(2)}-32 \log ^4(2)\right )-2 x^3 \left (e^8-8 \log ^4(2)\right )+\frac {2 e^4 \left (e^8-8 \log ^4(2)\right )}{\log ^2(2)}-\frac {e^4 x^2 \left (e^8-8 \log ^4(2)\right )}{\log ^2(2)}}{e^4 x+2 \log ^2(2)+x^2 \log ^2(2)} \, dx}{4 \left (e^8-8 \log ^4(2)\right )}\\ &=-\frac {e^4 x \left (e^4 x \left (8-\frac {e^8}{\log ^4(2)}\right )-\frac {2 \left (e^8-8 \log ^4(2)\right )}{\log ^2(2)}\right )}{4 \left (e^4 x+2 \log ^2(2)+x^2 \log ^2(2)\right ) \left (e^8-8 \log ^4(2)\right )}-\frac {\int \left (-8 e^4+\frac {e^{12}}{\log ^4(2)}+x \left (-\frac {2 e^8}{\log ^2(2)}+16 \log ^2(2)\right )\right ) \, dx}{4 \left (e^8-8 \log ^4(2)\right )}\\ &=-\frac {e^4 x}{4 \log ^4(2)}+\frac {x^2}{4 \log ^2(2)}-\frac {e^4 x \left (e^4 x \left (8-\frac {e^8}{\log ^4(2)}\right )-\frac {2 \left (e^8-8 \log ^4(2)\right )}{\log ^2(2)}\right )}{4 \left (e^4 x+2 \log ^2(2)+x^2 \log ^2(2)\right ) \left (e^8-8 \log ^4(2)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.04, size = 60, normalized size = 2.22 \begin {gather*} \frac {-e^{12} x-e^8 \left (2+x^2\right ) \log ^2(2)+x^2 \left (2+x^2\right ) \log ^6(2)}{4 \left (e^4 x \log ^6(2)+\left (2+x^2\right ) \log ^8(2)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.69, size = 56, normalized size = 2.07 \begin {gather*} \frac {{\left (x^{4} + 2 \, x^{2}\right )} \log \relax (2)^{6} - {\left (x^{2} + 2\right )} e^{8} \log \relax (2)^{2} - x e^{12}}{4 \, {\left ({\left (x^{2} + 2\right )} \log \relax (2)^{8} + x e^{4} \log \relax (2)^{6}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (x^{3} + 2 \, x\right )} \log \relax (2)^{2} + {\left (3 \, x^{3} + 2 \, x\right )} e^{\left (-\log \left (\frac {x^{2} + 2}{x}\right ) + 4\right )}}{4 \, {\left ({\left (x^{2} + 2\right )} \log \relax (2)^{4} + 2 \, {\left (x^{2} + 2\right )} e^{\left (-\log \left (\frac {x^{2} + 2}{x}\right ) + 4\right )} \log \relax (2)^{2} + {\left (x^{2} + 2\right )} e^{\left (-2 \, \log \left (\frac {x^{2} + 2}{x}\right ) + 8\right )}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.22, size = 62, normalized size = 2.30
method | result | size |
norman | \(\frac {-3 x^{2}-\frac {{\mathrm e}^{4} x^{3}}{\ln \relax (2)^{2}}+\frac {x^{6}}{4}-\frac {2 \,{\mathrm e}^{4} x}{\ln \relax (2)^{2}}-4}{\left (x^{2}+2\right ) \left (x^{2} \ln \relax (2)^{2}+x \,{\mathrm e}^{4}+2 \ln \relax (2)^{2}\right )}\) | \(62\) |
risch | \(\frac {x^{2}}{4 \ln \relax (2)^{2}}-\frac {x \,{\mathrm e}^{4}}{4 \ln \relax (2)^{4}}+\frac {-\frac {\left (-2 \ln \relax (2)^{4}+{\mathrm e}^{8}\right ) {\mathrm e}^{4} x}{\ln \relax (2)^{2}}-2 \,{\mathrm e}^{8}}{4 \ln \relax (2)^{4} \left (x^{2} \ln \relax (2)^{2}+x \,{\mathrm e}^{4}+2 \ln \relax (2)^{2}\right )}\) | \(70\) |
default | \(-\frac {-x^{2} \ln \relax (2)^{2}+x \,{\mathrm e}^{4}}{4 \ln \relax (2)^{4}}+\frac {\munderset {\textit {\_R} =\RootOf \left (\ln \relax (2)^{4} \textit {\_Z}^{4}+2 \,{\mathrm e}^{4} \ln \relax (2)^{2} \textit {\_Z}^{3}+\left (4 \ln \relax (2)^{4}+{\mathrm e}^{8}\right ) \textit {\_Z}^{2}+4 \ln \relax (2)^{2} \textit {\_Z} \,{\mathrm e}^{4}+4 \ln \relax (2)^{4}\right )}{\sum }\frac {\left ({\mathrm e}^{4} \left (-2 \ln \relax (2)^{4}+{\mathrm e}^{8}\right ) \textit {\_R}^{2}+4 \,{\mathrm e}^{8} \textit {\_R} \ln \relax (2)^{2}+4 \,{\mathrm e}^{4} \ln \relax (2)^{4}\right ) \ln \left (x -\textit {\_R} \right )}{2 \textit {\_R}^{3} \ln \relax (2)^{4}+3 \,{\mathrm e}^{4} \ln \relax (2)^{2} \textit {\_R}^{2}+4 \textit {\_R} \ln \relax (2)^{4}+2 \,{\mathrm e}^{4} \ln \relax (2)^{2}+\textit {\_R} \,{\mathrm e}^{8}}}{8 \ln \relax (2)^{4}}\) | \(162\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 73, normalized size = 2.70 \begin {gather*} -\frac {2 \, e^{8} \log \relax (2)^{2} - {\left (2 \, e^{4} \log \relax (2)^{4} - e^{12}\right )} x}{4 \, {\left (x^{2} \log \relax (2)^{8} + x e^{4} \log \relax (2)^{6} + 2 \, \log \relax (2)^{8}\right )}} + \frac {x^{2} \log \relax (2)^{2} - x e^{4}}{4 \, \log \relax (2)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.57, size = 33, normalized size = 1.22 \begin {gather*} \frac {x^4+2\,x^2}{4\,{\ln \relax (2)}^2\,x^2+4\,{\mathrm {e}}^4\,x+8\,{\ln \relax (2)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.72, size = 75, normalized size = 2.78 \begin {gather*} \frac {x^{2}}{4 \log {\relax (2 )}^{2}} - \frac {x e^{4}}{4 \log {\relax (2 )}^{4}} + \frac {x \left (- e^{12} + 2 e^{4} \log {\relax (2 )}^{4}\right ) - 2 e^{8} \log {\relax (2 )}^{2}}{4 x^{2} \log {\relax (2 )}^{8} + 4 x e^{4} \log {\relax (2 )}^{6} + 8 \log {\relax (2 )}^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________