Optimal. Leaf size=21 \[ \frac {1}{\log ^2\left (\log \left (x^2-20 \left (-e^6-x^2\right )\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 15, normalized size of antiderivative = 0.71, number of steps used = 2, number of rules used = 2, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {12, 6686} \begin {gather*} \frac {1}{\log ^2\left (\log \left (21 x^2+20 e^6\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (84 \int \frac {x}{\left (20 e^6+21 x^2\right ) \log \left (20 e^6+21 x^2\right ) \log ^3\left (\log \left (20 e^6+21 x^2\right )\right )} \, dx\right )\\ &=\frac {1}{\log ^2\left (\log \left (20 e^6+21 x^2\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 15, normalized size = 0.71 \begin {gather*} \frac {1}{\log ^2\left (\log \left (20 e^6+21 x^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 14, normalized size = 0.67 \begin {gather*} \frac {1}{\log \left (\log \left (21 \, x^{2} + 20 \, e^{6}\right )\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 14, normalized size = 0.67 \begin {gather*} \frac {1}{\log \left (\log \left (21 \, x^{2} + 20 \, e^{6}\right )\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 15, normalized size = 0.71
method | result | size |
risch | \(\frac {1}{\ln \left (\ln \left (20 \,{\mathrm e}^{6}+21 x^{2}\right )\right )^{2}}\) | \(15\) |
derivativedivides | \(\frac {1}{\ln \left (\ln \left (20 \,{\mathrm e}^{2} {\mathrm e}^{4}+21 x^{2}\right )\right )^{2}}\) | \(17\) |
default | \(\frac {1}{\ln \left (\ln \left (20 \,{\mathrm e}^{2} {\mathrm e}^{4}+21 x^{2}\right )\right )^{2}}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 14, normalized size = 0.67 \begin {gather*} \frac {1}{\log \left (\log \left (21 \, x^{2} + 20 \, e^{6}\right )\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.45, size = 14, normalized size = 0.67 \begin {gather*} \frac {1}{{\ln \left (\ln \left (21\,x^2+20\,{\mathrm {e}}^6\right )\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 15, normalized size = 0.71 \begin {gather*} \frac {1}{\log {\left (\log {\left (21 x^{2} + 20 e^{6} \right )} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________