Optimal. Leaf size=30 \[ \left (-e^2+e^x+x\right ) \left (x-\log \left (x+\frac {1}{4} (2 x+x \log (x))\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^2 (7-6 x)-7 x+12 x^2+e^x \left (-7+6 x+6 x^2\right )+\left (e^2 (1-x)-x+2 x^2+e^x \left (-1+x+x^2\right )\right ) \log (x)+\left (-6 x-6 e^x x+\left (-x-e^x x\right ) \log (x)\right ) \log \left (\frac {1}{4} (6 x+x \log (x))\right )}{6 x+x \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^2 (7-6 x)-7 x+12 x^2+e^x \left (-7+6 x+6 x^2\right )+\left (e^2 (1-x)-x+2 x^2+e^x \left (-1+x+x^2\right )\right ) \log (x)+\left (-6 x-6 e^x x+\left (-x-e^x x\right ) \log (x)\right ) \log \left (\frac {1}{4} (6 x+x \log (x))\right )}{x (6+\log (x))} \, dx\\ &=\int \left (-\frac {7}{6+\log (x)}+\frac {12 x}{6+\log (x)}-\frac {e^2 (-7+6 x)}{x (6+\log (x))}-\frac {\log (x)}{6+\log (x)}-\frac {e^2 (-1+x) \log (x)}{x (6+\log (x))}+\frac {2 x \log (x)}{6+\log (x)}-\frac {6 \log \left (\frac {1}{4} x (6+\log (x))\right )}{6+\log (x)}-\frac {\log (x) \log \left (\frac {1}{4} x (6+\log (x))\right )}{6+\log (x)}+\frac {e^x \left (-7+6 x+6 x^2-\log (x)+x \log (x)+x^2 \log (x)-6 x \log \left (\frac {1}{4} x (6+\log (x))\right )-x \log (x) \log \left (\frac {1}{4} x (6+\log (x))\right )\right )}{x (6+\log (x))}\right ) \, dx\\ &=2 \int \frac {x \log (x)}{6+\log (x)} \, dx-6 \int \frac {\log \left (\frac {1}{4} x (6+\log (x))\right )}{6+\log (x)} \, dx-7 \int \frac {1}{6+\log (x)} \, dx+12 \int \frac {x}{6+\log (x)} \, dx-e^2 \int \frac {-7+6 x}{x (6+\log (x))} \, dx-e^2 \int \frac {(-1+x) \log (x)}{x (6+\log (x))} \, dx-\int \frac {\log (x)}{6+\log (x)} \, dx-\int \frac {\log (x) \log \left (\frac {1}{4} x (6+\log (x))\right )}{6+\log (x)} \, dx+\int \frac {e^x \left (-7+6 x+6 x^2-\log (x)+x \log (x)+x^2 \log (x)-6 x \log \left (\frac {1}{4} x (6+\log (x))\right )-x \log (x) \log \left (\frac {1}{4} x (6+\log (x))\right )\right )}{x (6+\log (x))} \, dx\\ &=\frac {2 \text {Ei}(2 (6+\log (x))) \log (x)}{e^{12}}+\frac {e^x \left (6 x^2+x^2 \log (x)-6 x \log \left (\frac {1}{4} x (6+\log (x))\right )-x \log (x) \log \left (\frac {1}{4} x (6+\log (x))\right )\right )}{x (6+\log (x))}-2 \int \frac {\text {Ei}(2 (6+\log (x)))}{e^{12} x} \, dx-6 \int \frac {\log \left (\frac {1}{4} x (6+\log (x))\right )}{6+\log (x)} \, dx-7 \operatorname {Subst}\left (\int \frac {e^x}{6+x} \, dx,x,\log (x)\right )+12 \operatorname {Subst}\left (\int \frac {e^{2 x}}{6+x} \, dx,x,\log (x)\right )-e^2 \int \left (\frac {6}{6+\log (x)}-\frac {7}{x (6+\log (x))}\right ) \, dx-e^2 \int \left (\frac {-1+x}{x}-\frac {6 (-1+x)}{x (6+\log (x))}\right ) \, dx-\int \left (1-\frac {6}{6+\log (x)}\right ) \, dx-\int \frac {\log (x) \log \left (\frac {1}{4} x (6+\log (x))\right )}{6+\log (x)} \, dx\\ &=-x-\frac {7 \text {Ei}(6+\log (x))}{e^6}+\frac {12 \text {Ei}(2 (6+\log (x)))}{e^{12}}+\frac {2 \text {Ei}(2 (6+\log (x))) \log (x)}{e^{12}}+\frac {e^x \left (6 x^2+x^2 \log (x)-6 x \log \left (\frac {1}{4} x (6+\log (x))\right )-x \log (x) \log \left (\frac {1}{4} x (6+\log (x))\right )\right )}{x (6+\log (x))}+6 \int \frac {1}{6+\log (x)} \, dx-6 \int \frac {\log \left (\frac {1}{4} x (6+\log (x))\right )}{6+\log (x)} \, dx-\frac {2 \int \frac {\text {Ei}(2 (6+\log (x)))}{x} \, dx}{e^{12}}-e^2 \int \frac {-1+x}{x} \, dx-\left (6 e^2\right ) \int \frac {1}{6+\log (x)} \, dx+\left (6 e^2\right ) \int \frac {-1+x}{x (6+\log (x))} \, dx+\left (7 e^2\right ) \int \frac {1}{x (6+\log (x))} \, dx-\int \frac {\log (x) \log \left (\frac {1}{4} x (6+\log (x))\right )}{6+\log (x)} \, dx\\ &=-x-\frac {7 \text {Ei}(6+\log (x))}{e^6}+\frac {12 \text {Ei}(2 (6+\log (x)))}{e^{12}}+\frac {2 \text {Ei}(2 (6+\log (x))) \log (x)}{e^{12}}+\frac {e^x \left (6 x^2+x^2 \log (x)-6 x \log \left (\frac {1}{4} x (6+\log (x))\right )-x \log (x) \log \left (\frac {1}{4} x (6+\log (x))\right )\right )}{x (6+\log (x))}-6 \int \frac {\log \left (\frac {1}{4} x (6+\log (x))\right )}{6+\log (x)} \, dx+6 \operatorname {Subst}\left (\int \frac {e^x}{6+x} \, dx,x,\log (x)\right )-\frac {2 \operatorname {Subst}(\int \text {Ei}(2 (6+x)) \, dx,x,\log (x))}{e^{12}}-e^2 \int \left (1-\frac {1}{x}\right ) \, dx+\left (6 e^2\right ) \int \left (\frac {1}{6+\log (x)}-\frac {1}{x (6+\log (x))}\right ) \, dx-\left (6 e^2\right ) \operatorname {Subst}\left (\int \frac {e^x}{6+x} \, dx,x,\log (x)\right )+\left (7 e^2\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,6+\log (x)\right )-\int \frac {\log (x) \log \left (\frac {1}{4} x (6+\log (x))\right )}{6+\log (x)} \, dx\\ &=-x-e^2 x-\frac {\text {Ei}(6+\log (x))}{e^6}-\frac {6 \text {Ei}(6+\log (x))}{e^4}+\frac {12 \text {Ei}(2 (6+\log (x)))}{e^{12}}+e^2 \log (x)+\frac {2 \text {Ei}(2 (6+\log (x))) \log (x)}{e^{12}}+7 e^2 \log (6+\log (x))+\frac {e^x \left (6 x^2+x^2 \log (x)-6 x \log \left (\frac {1}{4} x (6+\log (x))\right )-x \log (x) \log \left (\frac {1}{4} x (6+\log (x))\right )\right )}{x (6+\log (x))}-6 \int \frac {\log \left (\frac {1}{4} x (6+\log (x))\right )}{6+\log (x)} \, dx-\frac {\operatorname {Subst}(\int \text {Ei}(x) \, dx,x,12+2 \log (x))}{e^{12}}+\left (6 e^2\right ) \int \frac {1}{6+\log (x)} \, dx-\left (6 e^2\right ) \int \frac {1}{x (6+\log (x))} \, dx-\int \frac {\log (x) \log \left (\frac {1}{4} x (6+\log (x))\right )}{6+\log (x)} \, dx\\ &=-x-e^2 x+x^2-\frac {\text {Ei}(6+\log (x))}{e^6}-\frac {6 \text {Ei}(6+\log (x))}{e^4}+\frac {12 \text {Ei}(2 (6+\log (x)))}{e^{12}}+e^2 \log (x)+\frac {2 \text {Ei}(2 (6+\log (x))) \log (x)}{e^{12}}-\frac {2 \text {Ei}(12+2 \log (x)) (6+\log (x))}{e^{12}}+7 e^2 \log (6+\log (x))+\frac {e^x \left (6 x^2+x^2 \log (x)-6 x \log \left (\frac {1}{4} x (6+\log (x))\right )-x \log (x) \log \left (\frac {1}{4} x (6+\log (x))\right )\right )}{x (6+\log (x))}-6 \int \frac {\log \left (\frac {1}{4} x (6+\log (x))\right )}{6+\log (x)} \, dx-\left (6 e^2\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,6+\log (x)\right )+\left (6 e^2\right ) \operatorname {Subst}\left (\int \frac {e^x}{6+x} \, dx,x,\log (x)\right )-\int \frac {\log (x) \log \left (\frac {1}{4} x (6+\log (x))\right )}{6+\log (x)} \, dx\\ &=-x-e^2 x+x^2-\frac {\text {Ei}(6+\log (x))}{e^6}+\frac {12 \text {Ei}(2 (6+\log (x)))}{e^{12}}+e^2 \log (x)+\frac {2 \text {Ei}(2 (6+\log (x))) \log (x)}{e^{12}}-\frac {2 \text {Ei}(12+2 \log (x)) (6+\log (x))}{e^{12}}+e^2 \log (6+\log (x))+\frac {e^x \left (6 x^2+x^2 \log (x)-6 x \log \left (\frac {1}{4} x (6+\log (x))\right )-x \log (x) \log \left (\frac {1}{4} x (6+\log (x))\right )\right )}{x (6+\log (x))}-6 \int \frac {\log \left (\frac {1}{4} x (6+\log (x))\right )}{6+\log (x)} \, dx-\int \frac {\log (x) \log \left (\frac {1}{4} x (6+\log (x))\right )}{6+\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 47, normalized size = 1.57 \begin {gather*} -e^2 x+e^x x+x^2+e^2 \log (x)+e^2 \log (6+\log (x))-\left (e^x+x\right ) \log \left (\frac {1}{4} x (6+\log (x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 33, normalized size = 1.10 \begin {gather*} x^{2} - x e^{2} + x e^{x} - {\left (x - e^{2} + e^{x}\right )} \log \left (\frac {1}{4} \, x \log \relax (x) + \frac {3}{2} \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 65, normalized size = 2.17 \begin {gather*} x^{2} - x e^{2} + x e^{x} + 2 \, x \log \relax (2) + 2 \, e^{x} \log \relax (2) - x \log \relax (x) + e^{2} \log \relax (x) - e^{x} \log \relax (x) - x \log \left (\log \relax (x) + 6\right ) + e^{2} \log \left (\log \relax (x) + 6\right ) - e^{x} \log \left (\log \relax (x) + 6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.60, size = 243, normalized size = 8.10
method | result | size |
risch | \(-{\mathrm e}^{2} x +x^{2}+2 \,{\mathrm e}^{x} \ln \relax (2)+{\mathrm e}^{2} \ln \relax (x )-{\mathrm e}^{x} \ln \relax (x )+2 x \ln \relax (2)+{\mathrm e}^{x} x -x \ln \relax (x )+\frac {i {\mathrm e}^{x} \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (\ln \relax (x )+6\right )\right ) \mathrm {csgn}\left (i x \left (\ln \relax (x )+6\right )\right )}{2}+\frac {i \pi x \mathrm {csgn}\left (i x \left (\ln \relax (x )+6\right )\right )^{3}}{2}+\left (-{\mathrm e}^{x}-x \right ) \ln \left (\ln \relax (x )+6\right )+{\mathrm e}^{2} \ln \left (\ln \relax (x )+6\right )-\frac {i \pi x \,\mathrm {csgn}\left (i \left (\ln \relax (x )+6\right )\right ) \mathrm {csgn}\left (i x \left (\ln \relax (x )+6\right )\right )^{2}}{2}-\frac {i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (\ln \relax (x )+6\right )\right )^{2}}{2}-\frac {i {\mathrm e}^{x} \pi \,\mathrm {csgn}\left (i \left (\ln \relax (x )+6\right )\right ) \mathrm {csgn}\left (i x \left (\ln \relax (x )+6\right )\right )^{2}}{2}+\frac {i {\mathrm e}^{x} \pi \mathrm {csgn}\left (i x \left (\ln \relax (x )+6\right )\right )^{3}}{2}-\frac {i {\mathrm e}^{x} \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (\ln \relax (x )+6\right )\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (\ln \relax (x )+6\right )\right ) \mathrm {csgn}\left (i x \left (\ln \relax (x )+6\right )\right )}{2}\) | \(243\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.53, size = 61, normalized size = 2.03 \begin {gather*} x^{2} - x {\left (e^{2} - 2 \, \log \relax (2)\right )} + {\left (x + 2 \, \log \relax (2) - \log \relax (x)\right )} e^{x} - {\left (x - e^{2}\right )} \log \relax (x) - {\left (x + 6 \, e^{2} + e^{x}\right )} \log \left (\log \relax (x) + 6\right ) + 7 \, e^{2} \log \left (\log \relax (x) + 6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.35, size = 42, normalized size = 1.40 \begin {gather*} {\mathrm {e}}^2\,\ln \left (\ln \relax (x)+6\right )-\ln \left (\frac {3\,x}{2}+\frac {x\,\ln \relax (x)}{4}\right )\,\left (x+{\mathrm {e}}^x\right )-x\,{\mathrm {e}}^2+{\mathrm {e}}^2\,\ln \relax (x)+x\,{\mathrm {e}}^x+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 12.61, size = 58, normalized size = 1.93 \begin {gather*} x^{2} - x \log {\left (\frac {x \log {\relax (x )}}{4} + \frac {3 x}{2} \right )} - x e^{2} + \left (x - \log {\left (\frac {x \log {\relax (x )}}{4} + \frac {3 x}{2} \right )}\right ) e^{x} + e^{2} \log {\relax (x )} + e^{2} \log {\left (\log {\relax (x )} + 6 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________