Optimal. Leaf size=24 \[ x+\frac {2+\frac {10}{-1+\frac {e^{x^2}}{16}+x}}{x^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4096-5632 x-1024 x^2+256 x^3-512 x^4+256 x^5+e^{2 x^2} \left (-4+x^3\right )+e^{x^2} \left (-192-128 x-320 x^2-32 x^3+32 x^4\right )}{256 x^3+e^{2 x^2} x^3-512 x^4+256 x^5+e^{x^2} \left (-32 x^3+32 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 x^2} \left (-4+x^3\right )+32 e^{x^2} \left (-6-4 x-10 x^2-x^3+x^4\right )+256 \left (16-22 x-4 x^2+x^3-2 x^4+x^5\right )}{\left (e^{x^2}+16 (-1+x)\right )^2 x^3} \, dx\\ &=\int \left (-\frac {320 \left (1+x^2\right )}{x^3 \left (-16+e^{x^2}+16 x\right )}+\frac {2560 \left (-1-2 x+2 x^2\right )}{x^2 \left (-16+e^{x^2}+16 x\right )^2}+\frac {-4+x^3}{x^3}\right ) \, dx\\ &=-\left (320 \int \frac {1+x^2}{x^3 \left (-16+e^{x^2}+16 x\right )} \, dx\right )+2560 \int \frac {-1-2 x+2 x^2}{x^2 \left (-16+e^{x^2}+16 x\right )^2} \, dx+\int \frac {-4+x^3}{x^3} \, dx\\ &=-\left (320 \int \left (\frac {1}{x^3 \left (-16+e^{x^2}+16 x\right )}+\frac {1}{x \left (-16+e^{x^2}+16 x\right )}\right ) \, dx\right )+2560 \int \left (\frac {2}{\left (-16+e^{x^2}+16 x\right )^2}-\frac {1}{x^2 \left (-16+e^{x^2}+16 x\right )^2}-\frac {2}{x \left (-16+e^{x^2}+16 x\right )^2}\right ) \, dx+\int \left (1-\frac {4}{x^3}\right ) \, dx\\ &=\frac {2}{x^2}+x-320 \int \frac {1}{x^3 \left (-16+e^{x^2}+16 x\right )} \, dx-320 \int \frac {1}{x \left (-16+e^{x^2}+16 x\right )} \, dx-2560 \int \frac {1}{x^2 \left (-16+e^{x^2}+16 x\right )^2} \, dx+5120 \int \frac {1}{\left (-16+e^{x^2}+16 x\right )^2} \, dx-5120 \int \frac {1}{x \left (-16+e^{x^2}+16 x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 24, normalized size = 1.00 \begin {gather*} \frac {2}{x^2}+x+\frac {160}{x^2 \left (-16+e^{x^2}+16 x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.89, size = 47, normalized size = 1.96 \begin {gather*} \frac {16 \, x^{4} - 16 \, x^{3} + {\left (x^{3} + 2\right )} e^{\left (x^{2}\right )} + 32 \, x + 128}{16 \, x^{3} + x^{2} e^{\left (x^{2}\right )} - 16 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 51, normalized size = 2.12 \begin {gather*} \frac {16 \, x^{4} + x^{3} e^{\left (x^{2}\right )} - 16 \, x^{3} + 32 \, x + 2 \, e^{\left (x^{2}\right )} + 128}{16 \, x^{3} + x^{2} e^{\left (x^{2}\right )} - 16 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 24, normalized size = 1.00
method | result | size |
risch | \(\frac {2}{x^{2}}+x +\frac {160}{x^{2} \left (-16+{\mathrm e}^{x^{2}}+16 x \right )}\) | \(24\) |
norman | \(\frac {128+x^{3} {\mathrm e}^{x^{2}}-16 x^{3}+32 x +16 x^{4}+2 \,{\mathrm e}^{x^{2}}}{x^{2} \left (-16+{\mathrm e}^{x^{2}}+16 x \right )}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.72, size = 47, normalized size = 1.96 \begin {gather*} \frac {16 \, x^{4} - 16 \, x^{3} + {\left (x^{3} + 2\right )} e^{\left (x^{2}\right )} + 32 \, x + 128}{16 \, x^{3} + x^{2} e^{\left (x^{2}\right )} - 16 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.32, size = 28, normalized size = 1.17 \begin {gather*} x+\frac {32\,x+2\,{\mathrm {e}}^{x^2}+128}{x^2\,\left (16\,x+{\mathrm {e}}^{x^2}-16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 26, normalized size = 1.08 \begin {gather*} x + \frac {160}{16 x^{3} + x^{2} e^{x^{2}} - 16 x^{2}} + \frac {2}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________