Optimal. Leaf size=25 \[ \frac {2 e^x}{e^{(1-x)^2}+x+\frac {x^2}{16}} \]
________________________________________________________________________________________
Rubi [F] time = 2.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{1-x+x^2} (1536-1024 x)+e^x \left (-512+448 x+32 x^2\right )}{256 e^{2-4 x+2 x^2}+256 x^2+32 x^3+x^4+e^{1-2 x+x^2} \left (512 x+32 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-512 e^{1+3 x+x^2} (-3+2 x)+32 e^{5 x} \left (-16+14 x+x^2\right )}{\left (16 e^{1+x^2}+e^{2 x} x (16+x)\right )^2} \, dx\\ &=\int \left (-\frac {32 e^{3 x} (-3+2 x)}{16 e^{1+x^2}+16 e^{2 x} x+e^{2 x} x^2}+\frac {64 e^{5 x} \left (-8-17 x+15 x^2+x^3\right )}{\left (16 e^{1+x^2}+16 e^{2 x} x+e^{2 x} x^2\right )^2}\right ) \, dx\\ &=-\left (32 \int \frac {e^{3 x} (-3+2 x)}{16 e^{1+x^2}+16 e^{2 x} x+e^{2 x} x^2} \, dx\right )+64 \int \frac {e^{5 x} \left (-8-17 x+15 x^2+x^3\right )}{\left (16 e^{1+x^2}+16 e^{2 x} x+e^{2 x} x^2\right )^2} \, dx\\ &=-\left (32 \int \left (-\frac {3 e^{3 x}}{16 e^{1+x^2}+16 e^{2 x} x+e^{2 x} x^2}+\frac {2 e^{3 x} x}{16 e^{1+x^2}+16 e^{2 x} x+e^{2 x} x^2}\right ) \, dx\right )+64 \int \left (-\frac {8 e^{5 x}}{\left (16 e^{1+x^2}+16 e^{2 x} x+e^{2 x} x^2\right )^2}-\frac {17 e^{5 x} x}{\left (16 e^{1+x^2}+16 e^{2 x} x+e^{2 x} x^2\right )^2}+\frac {15 e^{5 x} x^2}{\left (16 e^{1+x^2}+16 e^{2 x} x+e^{2 x} x^2\right )^2}+\frac {e^{5 x} x^3}{\left (16 e^{1+x^2}+16 e^{2 x} x+e^{2 x} x^2\right )^2}\right ) \, dx\\ &=64 \int \frac {e^{5 x} x^3}{\left (16 e^{1+x^2}+16 e^{2 x} x+e^{2 x} x^2\right )^2} \, dx-64 \int \frac {e^{3 x} x}{16 e^{1+x^2}+16 e^{2 x} x+e^{2 x} x^2} \, dx+96 \int \frac {e^{3 x}}{16 e^{1+x^2}+16 e^{2 x} x+e^{2 x} x^2} \, dx-512 \int \frac {e^{5 x}}{\left (16 e^{1+x^2}+16 e^{2 x} x+e^{2 x} x^2\right )^2} \, dx+960 \int \frac {e^{5 x} x^2}{\left (16 e^{1+x^2}+16 e^{2 x} x+e^{2 x} x^2\right )^2} \, dx-1088 \int \frac {e^{5 x} x}{\left (16 e^{1+x^2}+16 e^{2 x} x+e^{2 x} x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.33, size = 29, normalized size = 1.16 \begin {gather*} \frac {32 e^{3 x}}{16 e^{1+x^2}+e^{2 x} x (16+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.74, size = 44, normalized size = 1.76 \begin {gather*} \frac {32 \, e^{\left (x^{2} - x + 1\right )}}{{\left (x^{2} + 16 \, x\right )} e^{\left (x^{2} - 2 \, x + 1\right )} + 16 \, e^{\left (2 \, x^{2} - 4 \, x + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 255, normalized size = 10.20 \begin {gather*} \frac {32 \, {\left (x^{5} e^{\left (2 \, x\right )} + 31 \, x^{4} e^{\left (2 \, x\right )} + 16 \, x^{3} e^{\left (x^{2} + 1\right )} + 223 \, x^{3} e^{\left (2 \, x\right )} + 240 \, x^{2} e^{\left (x^{2} + 1\right )} - 280 \, x^{2} e^{\left (2 \, x\right )} - 272 \, x e^{\left (x^{2} + 1\right )} - 128 \, x e^{\left (2 \, x\right )} - 128 \, e^{\left (x^{2} + 1\right )}\right )}}{x^{7} e^{x} + 47 \, x^{6} e^{x} + 32 \, x^{5} e^{\left (x^{2} - x + 1\right )} + 719 \, x^{5} e^{x} + 992 \, x^{4} e^{\left (x^{2} - x + 1\right )} + 3288 \, x^{4} e^{x} + 256 \, x^{3} e^{\left (2 \, x^{2} - 3 \, x + 2\right )} + 7136 \, x^{3} e^{\left (x^{2} - x + 1\right )} - 4608 \, x^{3} e^{x} + 3840 \, x^{2} e^{\left (2 \, x^{2} - 3 \, x + 2\right )} - 8960 \, x^{2} e^{\left (x^{2} - x + 1\right )} - 2048 \, x^{2} e^{x} - 4352 \, x e^{\left (2 \, x^{2} - 3 \, x + 2\right )} - 4096 \, x e^{\left (x^{2} - x + 1\right )} - 2048 \, e^{\left (2 \, x^{2} - 3 \, x + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 22, normalized size = 0.88
method | result | size |
risch | \(\frac {32 \,{\mathrm e}^{x}}{x^{2}+16 \,{\mathrm e}^{\left (x -1\right )^{2}}+16 x}\) | \(22\) |
norman | \(\frac {32 \,{\mathrm e}^{x}}{x^{2}+16 \,{\mathrm e}^{x^{2}-2 x +1}+16 x}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 29, normalized size = 1.16 \begin {gather*} \frac {32 \, e^{\left (3 \, x\right )}}{{\left (x^{2} + 16 \, x\right )} e^{\left (2 \, x\right )} + 16 \, e^{\left (x^{2} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\mathrm {e}}^{x^2-x+1}\,\left (1024\,x-1536\right )-{\mathrm {e}}^x\,\left (32\,x^2+448\,x-512\right )}{256\,{\mathrm {e}}^{2\,x^2-4\,x+2}+{\mathrm {e}}^{x^2-2\,x+1}\,\left (32\,x^2+512\,x\right )+256\,x^2+32\,x^3+x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 22, normalized size = 0.88 \begin {gather*} \frac {32 e^{x}}{x^{2} + 16 x + 16 e^{x^{2} - 2 x + 1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________