Optimal. Leaf size=26 \[ e^{-4 e^x+\frac {2-\log (x)}{e^4}} x (x-\log (20)) \]
________________________________________________________________________________________
Rubi [F] time = 2.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-4+\frac {2-4 e^{4+x}-\log (x)}{e^4}} \left (-x+2 e^4 x+\left (1-e^4\right ) \log (20)+e^x \left (-4 e^4 x^2+4 e^4 x \log (20)\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{-4+\frac {2-4 e^{4+x}-\log (x)}{e^4}} \left (\left (-1+2 e^4\right ) x+\left (1-e^4\right ) \log (20)+e^x \left (-4 e^4 x^2+4 e^4 x \log (20)\right )\right ) \, dx\\ &=\int e^{-\frac {4 e^{4+x}-2 \left (1-2 e^4\right )+\log (x)}{e^4}} \left (\left (-1+2 e^4\right ) x+\left (1-e^4\right ) \log (20)+e^x \left (-4 e^4 x^2+4 e^4 x \log (20)\right )\right ) \, dx\\ &=\int e^{-\frac {4 e^{4+x}-2 \left (1-2 e^4\right )}{e^4}} x^{-\frac {1}{e^4}} \left (\left (-1+2 e^4\right ) x+\left (1-e^4\right ) \log (20)+e^x \left (-4 e^4 x^2+4 e^4 x \log (20)\right )\right ) \, dx\\ &=\int e^{-\frac {2 \left (-1+2 e^4+2 e^{4+x}\right )}{e^4}} x^{-\frac {1}{e^4}} \left (\left (-1+2 e^4\right ) x+\left (1-e^4\right ) \log (20)+e^x \left (-4 e^4 x^2+4 e^4 x \log (20)\right )\right ) \, dx\\ &=\int \left (e^{-\frac {2 \left (-1+2 e^4+2 e^{4+x}\right )}{e^4}} \left (-1+2 e^4\right ) x^{1-\frac {1}{e^4}}-4 e^{4-\frac {2 \left (-1+2 e^4+2 e^{4+x}\right )}{e^4}+x} x^{1-\frac {1}{e^4}} (x-\log (20))-e^{-\frac {2 \left (-1+2 e^4+2 e^{4+x}\right )}{e^4}} \left (-1+e^4\right ) x^{-\frac {1}{e^4}} \log (20)\right ) \, dx\\ &=-\left (4 \int e^{4-\frac {2 \left (-1+2 e^4+2 e^{4+x}\right )}{e^4}+x} x^{1-\frac {1}{e^4}} (x-\log (20)) \, dx\right )+\left (-1+2 e^4\right ) \int e^{-\frac {2 \left (-1+2 e^4+2 e^{4+x}\right )}{e^4}} x^{1-\frac {1}{e^4}} \, dx+\left (\left (1-e^4\right ) \log (20)\right ) \int e^{-\frac {2 \left (-1+2 e^4+2 e^{4+x}\right )}{e^4}} x^{-\frac {1}{e^4}} \, dx\\ &=-\left (4 \int e^{\frac {2}{e^4}-4 e^x+x} x^{1-\frac {1}{e^4}} (x-\log (20)) \, dx\right )+\left (-1+2 e^4\right ) \int e^{-\frac {2 \left (-1+2 e^4+2 e^{4+x}\right )}{e^4}} x^{1-\frac {1}{e^4}} \, dx+\left (\left (1-e^4\right ) \log (20)\right ) \int e^{-\frac {2 \left (-1+2 e^4+2 e^{4+x}\right )}{e^4}} x^{-\frac {1}{e^4}} \, dx\\ &=-\left (4 \int \left (e^{\frac {2}{e^4}-4 e^x+x} x^{2-\frac {1}{e^4}}-e^{\frac {2}{e^4}-4 e^x+x} x^{1-\frac {1}{e^4}} \log (20)\right ) \, dx\right )+\left (-1+2 e^4\right ) \int e^{-\frac {2 \left (-1+2 e^4+2 e^{4+x}\right )}{e^4}} x^{1-\frac {1}{e^4}} \, dx+\left (\left (1-e^4\right ) \log (20)\right ) \int e^{-\frac {2 \left (-1+2 e^4+2 e^{4+x}\right )}{e^4}} x^{-\frac {1}{e^4}} \, dx\\ &=-\left (4 \int e^{\frac {2}{e^4}-4 e^x+x} x^{2-\frac {1}{e^4}} \, dx\right )+\left (-1+2 e^4\right ) \int e^{-\frac {2 \left (-1+2 e^4+2 e^{4+x}\right )}{e^4}} x^{1-\frac {1}{e^4}} \, dx+(4 \log (20)) \int e^{\frac {2}{e^4}-4 e^x+x} x^{1-\frac {1}{e^4}} \, dx+\left (\left (1-e^4\right ) \log (20)\right ) \int e^{-\frac {2 \left (-1+2 e^4+2 e^{4+x}\right )}{e^4}} x^{-\frac {1}{e^4}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.71, size = 29, normalized size = 1.12 \begin {gather*} e^{\frac {2}{e^4}-4 e^x} x^{1-\frac {1}{e^4}} (x-\log (20)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 34, normalized size = 1.31 \begin {gather*} {\left (x^{2} e^{4} - x e^{4} \log \left (20\right )\right )} e^{\left (-{\left (4 \, e^{4} + 4 \, e^{\left (x + 4\right )} + \log \relax (x) - 2\right )} e^{\left (-4\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int {\left (2 \, x e^{4} - 4 \, {\left (x^{2} e^{4} - x e^{4} \log \left (20\right )\right )} e^{x} - {\left (e^{4} - 1\right )} \log \left (20\right ) - x\right )} e^{\left (-{\left (4 \, e^{\left (x + 4\right )} + \log \relax (x) - 2\right )} e^{\left (-4\right )} - 4\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 44, normalized size = 1.69
method | result | size |
risch | \(\left (-x \,{\mathrm e}^{4} \ln \relax (5)-2 x \,{\mathrm e}^{4} \ln \relax (2)+x^{2} {\mathrm e}^{4}\right ) {\mathrm e}^{-{\mathrm e}^{-4} \ln \relax (x )-4 \,{\mathrm e}^{-4} {\mathrm e}^{4+x}+2 \,{\mathrm e}^{-4}-4}\) | \(44\) |
norman | \(x^{2} {\mathrm e}^{\left (-\ln \relax (x )-4 \,{\mathrm e}^{4} {\mathrm e}^{x}+2\right ) {\mathrm e}^{-4}}-x \ln \left (20\right ) {\mathrm e}^{\left (-\ln \relax (x )-4 \,{\mathrm e}^{4} {\mathrm e}^{x}+2\right ) {\mathrm e}^{-4}}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.04, size = 38, normalized size = 1.46 \begin {gather*} {\left (x^{2} e^{\left (2 \, e^{\left (-4\right )}\right )} - x {\left (\log \relax (5) + 2 \, \log \relax (2)\right )} e^{\left (2 \, e^{\left (-4\right )}\right )}\right )} e^{\left (-e^{\left (-4\right )} \log \relax (x) - 4 \, e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.30, size = 24, normalized size = 0.92 \begin {gather*} \frac {x\,{\mathrm {e}}^{2\,{\mathrm {e}}^{-4}-4\,{\mathrm {e}}^x}\,\left (x-\ln \left (20\right )\right )}{x^{{\mathrm {e}}^{-4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 26, normalized size = 1.00 \begin {gather*} \left (x^{2} - x \log {\left (20 \right )}\right ) e^{\frac {- 4 e^{4} e^{x} - \log {\relax (x )} + 2}{e^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________