Optimal. Leaf size=33 \[ 3-x-\left (5-x-2 x^2\right ) \log \left (x+5 \left (-x+\frac {x \log (3)}{e}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 29, normalized size of antiderivative = 0.88, number of steps used = 6, number of rules used = 2, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {14, 2313} \begin {gather*} \left (2 x^2+x\right ) \log \left (-x \left (4-\frac {5 \log (3)}{e}\right )\right )-x-5 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2313
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-5+2 x^2}{x}+(1+4 x) \log \left (-x \left (4-\frac {5 \log (3)}{e}\right )\right )\right ) \, dx\\ &=\int \frac {-5+2 x^2}{x} \, dx+\int (1+4 x) \log \left (x \left (-4+\frac {5 \log (3)}{e}\right )\right ) \, dx\\ &=\left (x+2 x^2\right ) \log \left (-x \left (4-\frac {5 \log (3)}{e}\right )\right )-\int (1+2 x) \, dx+\int \left (-\frac {5}{x}+2 x\right ) \, dx\\ &=-x-5 \log (x)+\left (x+2 x^2\right ) \log \left (-x \left (4-\frac {5 \log (3)}{e}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 39, normalized size = 1.18 \begin {gather*} -x-5 \log (x)+x \log \left (x \left (-4+\frac {5 \log (3)}{e}\right )\right )+2 x^2 \log \left (x \left (-4+\frac {5 \log (3)}{e}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 29, normalized size = 0.88 \begin {gather*} {\left (2 \, x^{2} + x - 5\right )} \log \left (-{\left (4 \, x e - 5 \, x \log \relax (3)\right )} e^{\left (-1\right )}\right ) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 44, normalized size = 1.33 \begin {gather*} 2 \, x^{2} \log \left (-4 \, x e + 5 \, x \log \relax (3)\right ) - 2 \, x^{2} + x \log \left (-4 \, x e + 5 \, x \log \relax (3)\right ) - 2 \, x - 5 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 32, normalized size = 0.97
method | result | size |
risch | \(\left (2 x^{2}+x \right ) \ln \left (\left (5 x \ln \relax (3)-4 x \,{\mathrm e}\right ) {\mathrm e}^{-1}\right )-x -5 \ln \relax (x )\) | \(32\) |
norman | \(x \ln \left (\left (5 x \ln \relax (3)-4 x \,{\mathrm e}\right ) {\mathrm e}^{-1}\right )-5 \ln \left (\left (5 x \ln \relax (3)-4 x \,{\mathrm e}\right ) {\mathrm e}^{-1}\right )-x +2 x^{2} \ln \left (\left (5 x \ln \relax (3)-4 x \,{\mathrm e}\right ) {\mathrm e}^{-1}\right )\) | \(65\) |
derivativedivides | \(\frac {4 \,{\mathrm e}^{2} \left (\frac {x^{2} \left (4 \,{\mathrm e}-5 \ln \relax (3)\right )^{2} {\mathrm e}^{-2} \ln \left (-x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1}\right )}{2}-\frac {x^{2} \left (4 \,{\mathrm e}-5 \ln \relax (3)\right )^{2} {\mathrm e}^{-2}}{4}\right )}{\left (4 \,{\mathrm e}-5 \ln \relax (3)\right )^{2}}-\frac {4 \,{\mathrm e}^{2} \left (-x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1} \ln \left (-x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1}\right )+x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1}\right )}{\left (4 \,{\mathrm e}-5 \ln \relax (3)\right )^{2}}+x^{2}+\frac {5 \,{\mathrm e} \ln \relax (3) \left (-x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1} \ln \left (-x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1}\right )+x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1}\right )}{\left (4 \,{\mathrm e}-5 \ln \relax (3)\right )^{2}}-\frac {80 \,{\mathrm e}^{2} \ln \left (-x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1}\right )}{\left (4 \,{\mathrm e}-5 \ln \relax (3)\right )^{2}}+\frac {200 \,{\mathrm e} \ln \relax (3) \ln \left (-x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1}\right )}{\left (4 \,{\mathrm e}-5 \ln \relax (3)\right )^{2}}-\frac {125 \ln \relax (3)^{2} \ln \left (-x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1}\right )}{\left (4 \,{\mathrm e}-5 \ln \relax (3)\right )^{2}}\) | \(314\) |
default | \(\frac {4 \,{\mathrm e}^{2} \left (\frac {x^{2} \left (4 \,{\mathrm e}-5 \ln \relax (3)\right )^{2} {\mathrm e}^{-2} \ln \left (-x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1}\right )}{2}-\frac {x^{2} \left (4 \,{\mathrm e}-5 \ln \relax (3)\right )^{2} {\mathrm e}^{-2}}{4}\right )}{\left (4 \,{\mathrm e}-5 \ln \relax (3)\right )^{2}}-\frac {4 \,{\mathrm e}^{2} \left (-x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1} \ln \left (-x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1}\right )+x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1}\right )}{\left (4 \,{\mathrm e}-5 \ln \relax (3)\right )^{2}}+x^{2}+\frac {5 \,{\mathrm e} \ln \relax (3) \left (-x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1} \ln \left (-x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1}\right )+x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1}\right )}{\left (4 \,{\mathrm e}-5 \ln \relax (3)\right )^{2}}-\frac {80 \,{\mathrm e}^{2} \ln \left (-x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1}\right )}{\left (4 \,{\mathrm e}-5 \ln \relax (3)\right )^{2}}+\frac {200 \,{\mathrm e} \ln \relax (3) \ln \left (-x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1}\right )}{\left (4 \,{\mathrm e}-5 \ln \relax (3)\right )^{2}}-\frac {125 \ln \relax (3)^{2} \ln \left (-x \left (4 \,{\mathrm e}-5 \ln \relax (3)\right ) {\mathrm e}^{-1}\right )}{\left (4 \,{\mathrm e}-5 \ln \relax (3)\right )^{2}}\) | \(314\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 98, normalized size = 2.97 \begin {gather*} \frac {{\left (5 \, e^{\left (-1\right )} \log \relax (3) - 4\right )} x^{2} e}{4 \, e - 5 \, \log \relax (3)} + 2 \, x^{2} \log \left (5 \, x e^{\left (-1\right )} \log \relax (3) - 4 \, x\right ) + x^{2} - \frac {5 \, x e^{\left (-1\right )} \log \relax (3) - {\left (5 \, x e^{\left (-1\right )} \log \relax (3) - 4 \, x\right )} \log \left (5 \, x e^{\left (-1\right )} \log \relax (3) - 4 \, x\right ) - 4 \, x}{5 \, e^{\left (-1\right )} \log \relax (3) - 4} - 5 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.18, size = 39, normalized size = 1.18 \begin {gather*} x\,\ln \left (5\,x\,{\mathrm {e}}^{-1}\,\ln \relax (3)-4\,x\right )-5\,\ln \relax (x)-x+2\,x^2\,\ln \left (5\,x\,{\mathrm {e}}^{-1}\,\ln \relax (3)-4\,x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 31, normalized size = 0.94 \begin {gather*} - x + \left (2 x^{2} + x\right ) \log {\left (\frac {- 4 e x + 5 x \log {\relax (3 )}}{e} \right )} - 5 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________