Optimal. Leaf size=21 \[ 2 x+\frac {1+x}{144-e}+\log \left (\frac {x}{4}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 17, normalized size of antiderivative = 0.81, number of steps used = 5, number of rules used = 4, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {6, 12, 186, 43} \begin {gather*} \frac {(289-2 e) x}{144-e}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 43
Rule 186
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-144-289 x+e (1+2 x)}{(-144+e) x} \, dx\\ &=\frac {\int \frac {-144-289 x+e (1+2 x)}{x} \, dx}{-144+e}\\ &=\frac {\int \frac {-144+e-(289-2 e) x}{x} \, dx}{-144+e}\\ &=\frac {\int \left (-289+2 e+\frac {-144+e}{x}\right ) \, dx}{-144+e}\\ &=\frac {(289-2 e) x}{144-e}+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 20, normalized size = 0.95 \begin {gather*} \frac {(-289+2 e) x+(-144+e) \log (x)}{-144+e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 23, normalized size = 1.10 \begin {gather*} \frac {2 \, x e + {\left (e - 144\right )} \log \relax (x) - 289 \, x}{e - 144} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 20, normalized size = 0.95 \begin {gather*} \frac {2 \, x e - 289 \, x}{e - 144} + \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.86
method | result | size |
norman | \(\frac {\left (2 \,{\mathrm e}-289\right ) x}{{\mathrm e}-144}+\ln \relax (x )\) | \(18\) |
default | \(\frac {2 x \,{\mathrm e}-289 x +\left ({\mathrm e}-144\right ) \ln \relax (x )}{{\mathrm e}-144}\) | \(24\) |
risch | \(\frac {2 x \,{\mathrm e}}{{\mathrm e}-144}-\frac {289 x}{{\mathrm e}-144}+\ln \relax (x )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 17, normalized size = 0.81 \begin {gather*} \frac {x {\left (2 \, e - 289\right )}}{e - 144} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 17, normalized size = 0.81 \begin {gather*} \ln \relax (x)+\frac {x\,\left (2\,\mathrm {e}-289\right )}{\mathrm {e}-144} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 22, normalized size = 1.05 \begin {gather*} \frac {- x \left (289 - 2 e\right ) - \left (144 - e\right ) \log {\relax (x )}}{-144 + e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________