Optimal. Leaf size=23 \[ \frac {640000 e^{4+2 x} (-2+x)^2}{-e^x+x} \]
________________________________________________________________________________________
Rubi [F] time = 1.63, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{4+3 x} \left (1280000 x-640000 x^2\right )+e^{4+2 x} \left (-2560000+5120000 x-4480000 x^2+1280000 x^3\right )}{e^{2 x}-2 e^x x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {640000 e^{4+2 x} (2-x) \left (-2+\left (3+e^x\right ) x-2 x^2\right )}{\left (e^x-x\right )^2} \, dx\\ &=640000 \int \frac {e^{4+2 x} (2-x) \left (-2+\left (3+e^x\right ) x-2 x^2\right )}{\left (e^x-x\right )^2} \, dx\\ &=640000 \int \left (\frac {e^{4+2 x} (-2+x)^2 (-1+x)}{\left (e^x-x\right )^2}-\frac {e^{4+2 x} (-2+x) x}{e^x-x}\right ) \, dx\\ &=640000 \int \frac {e^{4+2 x} (-2+x)^2 (-1+x)}{\left (e^x-x\right )^2} \, dx-640000 \int \frac {e^{4+2 x} (-2+x) x}{e^x-x} \, dx\\ &=-\left (640000 \int \left (-\frac {2 e^{4+2 x} x}{e^x-x}+\frac {e^{4+2 x} x^2}{e^x-x}\right ) \, dx\right )+640000 \int \left (-\frac {4 e^{4+2 x}}{\left (e^x-x\right )^2}+\frac {8 e^{4+2 x} x}{\left (e^x-x\right )^2}-\frac {5 e^{4+2 x} x^2}{\left (e^x-x\right )^2}+\frac {e^{4+2 x} x^3}{\left (e^x-x\right )^2}\right ) \, dx\\ &=-\left (640000 \int \frac {e^{4+2 x} x^2}{e^x-x} \, dx\right )+640000 \int \frac {e^{4+2 x} x^3}{\left (e^x-x\right )^2} \, dx+1280000 \int \frac {e^{4+2 x} x}{e^x-x} \, dx-2560000 \int \frac {e^{4+2 x}}{\left (e^x-x\right )^2} \, dx-3200000 \int \frac {e^{4+2 x} x^2}{\left (e^x-x\right )^2} \, dx+5120000 \int \frac {e^{4+2 x} x}{\left (e^x-x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 23, normalized size = 1.00 \begin {gather*} -\frac {640000 e^{4+2 x} (-2+x)^2}{e^x-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 24, normalized size = 1.04 \begin {gather*} \frac {640000 \, {\left (x^{2} - 4 \, x + 4\right )} e^{\left (2 \, x + 4\right )}}{x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 38, normalized size = 1.65 \begin {gather*} \frac {640000 \, {\left (x^{2} e^{\left (2 \, x + 4\right )} - 4 \, x e^{\left (2 \, x + 4\right )} + 4 \, e^{\left (2 \, x + 4\right )}\right )}}{x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 45, normalized size = 1.96
method | result | size |
norman | \(\frac {2560000 \,{\mathrm e}^{4} {\mathrm e}^{2 x}-2560000 \,{\mathrm e}^{4} {\mathrm e}^{2 x} x +640000 \,{\mathrm e}^{4} {\mathrm e}^{2 x} x^{2}}{x -{\mathrm e}^{x}}\) | \(45\) |
risch | \(-640000 x^{3} {\mathrm e}^{4}+2560000 x^{2} {\mathrm e}^{4}-2560000 x \,{\mathrm e}^{4}+\left (-640000 x^{2} {\mathrm e}^{4}+2560000 x \,{\mathrm e}^{4}-2560000 \,{\mathrm e}^{4}\right ) {\mathrm e}^{x}+\frac {640000 \left (x^{2}-4 x +4\right ) {\mathrm e}^{4} x^{2}}{x -{\mathrm e}^{x}}\) | \(64\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.84, size = 30, normalized size = 1.30 \begin {gather*} \frac {640000 \, {\left (x^{2} e^{4} - 4 \, x e^{4} + 4 \, e^{4}\right )} e^{\left (2 \, x\right )}}{x - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.19, size = 21, normalized size = 0.91 \begin {gather*} \frac {640000\,{\mathrm {e}}^{2\,x+4}\,{\left (x-2\right )}^2}{x-{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.16, size = 76, normalized size = 3.30 \begin {gather*} - 640000 x^{3} e^{4} + 2560000 x^{2} e^{4} - 2560000 x e^{4} + \left (- 640000 x^{2} e^{4} + 2560000 x e^{4} - 2560000 e^{4}\right ) e^{x} + \frac {- 640000 x^{4} e^{4} + 2560000 x^{3} e^{4} - 2560000 x^{2} e^{4}}{- x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________