Optimal. Leaf size=30 \[ e^{-e^{-5+e^5-x}} x \left (4+4 (4-x)-x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 29, normalized size of antiderivative = 0.97, number of steps used = 2, number of rules used = 2, integrand size = 76, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {1586, 2288} \begin {gather*} e^{-e^{-x+e^5-5}} \left (-x^3-4 x^2+20 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1586
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\int e^{-e^{-5+e^5-x}} \left (-20+8 x+3 x^2+e^{-5+e^5-x} \left (-20 x+4 x^2+x^3\right )\right ) \, dx\\ &=e^{-e^{-5+e^5-x}} \left (20 x-4 x^2-x^3\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 25, normalized size = 0.83 \begin {gather*} -e^{-e^{-5+e^5-x}} x \left (-20+4 x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 27, normalized size = 0.90 \begin {gather*} e^{\left (-e^{\left (-x + e^{5} - 5\right )} + \log \left (-x^{3} - 4 \, x^{2} + 20 \, x\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.28, size = 77, normalized size = 2.57 \begin {gather*} -{\left (x^{3} e^{\left (-x + e^{5} - e^{\left (-x + e^{5} - 5\right )} - 5\right )} + 4 \, x^{2} e^{\left (-x + e^{5} - e^{\left (-x + e^{5} - 5\right )} - 5\right )} - 20 \, x e^{\left (-x + e^{5} - e^{\left (-x + e^{5} - 5\right )} - 5\right )}\right )} e^{\left (x - e^{5} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.12, size = 151, normalized size = 5.03
method | result | size |
risch | \(-x \left (x^{2}+4 x -20\right ) {\mathrm e}^{\frac {i \pi \mathrm {csgn}\left (i x \left (x^{2}+4 x -20\right )\right )^{3}}{2}+\frac {i \pi \mathrm {csgn}\left (i x \left (x^{2}+4 x -20\right )\right )^{2} \mathrm {csgn}\left (i x \right )}{2}+\frac {i \pi \mathrm {csgn}\left (i x \left (x^{2}+4 x -20\right )\right )^{2} \mathrm {csgn}\left (i \left (x^{2}+4 x -20\right )\right )}{2}-\frac {i \pi \,\mathrm {csgn}\left (i x \left (x^{2}+4 x -20\right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x^{2}+4 x -20\right )\right )}{2}-i \pi \mathrm {csgn}\left (i x \left (x^{2}+4 x -20\right )\right )^{2}-{\mathrm e}^{{\mathrm e}^{5}-x -5}}\) | \(151\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -{\left (3 \, x^{2} + {\left (x^{3} + 4 \, x^{2} - 20 \, x\right )} e^{\left (-x + e^{5} - 5\right )} + 8 \, x - 20\right )} e^{\left (-e^{\left (-x + e^{5} - 5\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.43, size = 23, normalized size = 0.77 \begin {gather*} -x\,{\mathrm {e}}^{-{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-5}\,{\mathrm {e}}^{{\mathrm {e}}^5}}\,\left (x^2+4\,x-20\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 20, normalized size = 0.67 \begin {gather*} \left (- x^{3} - 4 x^{2} + 20 x\right ) e^{- e^{- x - 5 + e^{5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________