Optimal. Leaf size=28 \[ \frac {2 e^{\frac {4}{2+x}}}{x \left (x^2-\frac {3 (4+x)}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.26, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {4}{2+x}} \left (120+48 x-18 x^2-32 x^3-6 x^4\right )}{576+864 x+468 x^2+12 x^3-111 x^4-48 x^5-2 x^6+4 x^7+x^8} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{\frac {4}{2+x}} \left (60+24 x-9 x^2-16 x^3-3 x^4\right )}{\left (24+18 x+3 x^2-2 x^3-x^4\right )^2} \, dx\\ &=2 \int \frac {e^{\frac {4}{2+x}} \left (60+24 x-9 x^2-16 x^3-3 x^4\right )}{\left (24+18 x+3 x^2-2 x^3-x^4\right )^2} \, dx\\ &=2 \int \left (\frac {2 e^{\frac {4}{2+x}}}{7 (2+x)^2}+\frac {9 e^{\frac {4}{2+x}}}{49 (2+x)}-\frac {3 e^{\frac {4}{2+x}} \left (-1+x^2\right )}{\left (-12-3 x+x^3\right )^2}+\frac {e^{\frac {4}{2+x}} \left (47+4 x-9 x^2\right )}{49 \left (-12-3 x+x^3\right )}\right ) \, dx\\ &=\frac {2}{49} \int \frac {e^{\frac {4}{2+x}} \left (47+4 x-9 x^2\right )}{-12-3 x+x^3} \, dx+\frac {18}{49} \int \frac {e^{\frac {4}{2+x}}}{2+x} \, dx+\frac {4}{7} \int \frac {e^{\frac {4}{2+x}}}{(2+x)^2} \, dx-6 \int \frac {e^{\frac {4}{2+x}} \left (-1+x^2\right )}{\left (-12-3 x+x^3\right )^2} \, dx\\ &=-\frac {1}{7} e^{\frac {4}{2+x}}-\frac {18 \text {Ei}\left (\frac {4}{2+x}\right )}{49}+\frac {2}{49} \int \left (\frac {47 e^{\frac {4}{2+x}}}{-12-3 x+x^3}+\frac {4 e^{\frac {4}{2+x}} x}{-12-3 x+x^3}-\frac {9 e^{\frac {4}{2+x}} x^2}{-12-3 x+x^3}\right ) \, dx-6 \int \left (-\frac {e^{\frac {4}{2+x}}}{\left (-12-3 x+x^3\right )^2}+\frac {e^{\frac {4}{2+x}} x^2}{\left (-12-3 x+x^3\right )^2}\right ) \, dx\\ &=-\frac {1}{7} e^{\frac {4}{2+x}}-\frac {18 \text {Ei}\left (\frac {4}{2+x}\right )}{49}+\frac {8}{49} \int \frac {e^{\frac {4}{2+x}} x}{-12-3 x+x^3} \, dx-\frac {18}{49} \int \frac {e^{\frac {4}{2+x}} x^2}{-12-3 x+x^3} \, dx+\frac {94}{49} \int \frac {e^{\frac {4}{2+x}}}{-12-3 x+x^3} \, dx+6 \int \frac {e^{\frac {4}{2+x}}}{\left (-12-3 x+x^3\right )^2} \, dx-6 \int \frac {e^{\frac {4}{2+x}} x^2}{\left (-12-3 x+x^3\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 23, normalized size = 0.82 \begin {gather*} -\frac {2 e^{\frac {4}{2+x}}}{12+3 x-x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 20, normalized size = 0.71 \begin {gather*} \frac {2 \, e^{\left (\frac {4}{x + 2}\right )}}{x^{3} - 3 \, x - 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 40, normalized size = 1.43 \begin {gather*} -\frac {2 \, e^{\left (\frac {4}{x + 2}\right )}}{{\left (x + 2\right )}^{3} {\left (\frac {6}{x + 2} - \frac {9}{{\left (x + 2\right )}^{2}} + \frac {14}{{\left (x + 2\right )}^{3}} - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 21, normalized size = 0.75
method | result | size |
gosper | \(\frac {2 \,{\mathrm e}^{\frac {4}{2+x}}}{x^{3}-3 x -12}\) | \(21\) |
risch | \(\frac {2 \,{\mathrm e}^{\frac {4}{2+x}}}{x^{3}-3 x -12}\) | \(21\) |
norman | \(\frac {2 x \,{\mathrm e}^{\frac {4}{2+x}}+4 \,{\mathrm e}^{\frac {4}{2+x}}}{x^{4}+2 x^{3}-3 x^{2}-18 x -24}\) | \(44\) |
derivativedivides | \(\frac {4 \,{\mathrm e}^{\frac {4}{2+x}} \left (\frac {112}{\left (2+x \right )^{2}}+\frac {40}{2+x}-32\right )}{35 \left (\frac {448}{\left (2+x \right )^{3}}-\frac {288}{\left (2+x \right )^{2}}+\frac {192}{2+x}-32\right )}+\frac {4 \left (\munderset {\textit {\_R1} =\RootOf \left (7 \textit {\_Z}^{3}-18 \textit {\_Z}^{2}+48 \textit {\_Z} -32\right )}{\sum }\frac {\left (7 \textit {\_R1}^{2}+3 \textit {\_R1} -70\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -\frac {4}{2+x}+\textit {\_R1} \right )}{7 \textit {\_R1}^{2}-12 \textit {\_R1} +16}\right )}{105}-\frac {32 \,{\mathrm e}^{\frac {4}{2+x}} \left (\frac {112}{\left (2+x \right )^{2}}-\frac {80}{2+x}+8\right )}{105 \left (\frac {448}{\left (2+x \right )^{3}}-\frac {288}{\left (2+x \right )^{2}}+\frac {192}{2+x}-32\right )}-\frac {32 \left (\munderset {\textit {\_R1} =\RootOf \left (7 \textit {\_Z}^{3}-18 \textit {\_Z}^{2}+48 \textit {\_Z} -32\right )}{\sum }\frac {\textit {\_R1} \left (7 \textit {\_R1} -27\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -\frac {4}{2+x}+\textit {\_R1} \right )}{7 \textit {\_R1}^{2}-12 \textit {\_R1} +16}\right )}{315}+\frac {2 \,{\mathrm e}^{\frac {4}{2+x}} \left (\frac {16}{\left (2+x \right )^{2}}+\frac {80}{2+x}-16\right )}{7 \left (\frac {448}{\left (2+x \right )^{3}}-\frac {288}{\left (2+x \right )^{2}}+\frac {192}{2+x}-32\right )}+\frac {2 \left (\munderset {\textit {\_R1} =\RootOf \left (7 \textit {\_Z}^{3}-18 \textit {\_Z}^{2}+48 \textit {\_Z} -32\right )}{\sum }\frac {\left (\textit {\_R1}^{2}+34 \textit {\_R1} -20\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -\frac {4}{2+x}+\textit {\_R1} \right )}{7 \textit {\_R1}^{2}-12 \textit {\_R1} +16}\right )}{21}-\frac {12 \,{\mathrm e}^{\frac {4}{2+x}} \left (\frac {1264}{\left (2+x \right )^{2}}-\frac {320}{2+x}+16\right )}{245 \left (\frac {448}{\left (2+x \right )^{3}}-\frac {288}{\left (2+x \right )^{2}}+\frac {192}{2+x}-32\right )}-\frac {2 \left (\munderset {\textit {\_R1} =\RootOf \left (7 \textit {\_Z}^{3}-18 \textit {\_Z}^{2}+48 \textit {\_Z} -32\right )}{\sum }\frac {\left (263 \textit {\_R1}^{2}-48 \textit {\_R1} -80\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -\frac {4}{2+x}+\textit {\_R1} \right )}{7 \textit {\_R1}^{2}-12 \textit {\_R1} +16}\right )}{245}-\frac {{\mathrm e}^{\frac {4}{2+x}}}{7}+\frac {4 \,{\mathrm e}^{\frac {4}{2+x}} \left (\frac {6896}{\left (2+x \right )^{2}}-\frac {7360}{2+x}+1264\right )}{735 \left (\frac {448}{\left (2+x \right )^{3}}-\frac {288}{\left (2+x \right )^{2}}+\frac {192}{2+x}-32\right )}+\frac {32 \left (\munderset {\textit {\_R1} =\RootOf \left (7 \textit {\_Z}^{3}-18 \textit {\_Z}^{2}+48 \textit {\_Z} -32\right )}{\sum }\frac {\left (172 \textit {\_R1}^{2}-447 \textit {\_R1} +270\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -\frac {4}{2+x}+\textit {\_R1} \right )}{7 \textit {\_R1}^{2}-12 \textit {\_R1} +16}\right )}{2205}\) | \(546\) |
default | \(\frac {4 \,{\mathrm e}^{\frac {4}{2+x}} \left (\frac {112}{\left (2+x \right )^{2}}+\frac {40}{2+x}-32\right )}{35 \left (\frac {448}{\left (2+x \right )^{3}}-\frac {288}{\left (2+x \right )^{2}}+\frac {192}{2+x}-32\right )}+\frac {4 \left (\munderset {\textit {\_R1} =\RootOf \left (7 \textit {\_Z}^{3}-18 \textit {\_Z}^{2}+48 \textit {\_Z} -32\right )}{\sum }\frac {\left (7 \textit {\_R1}^{2}+3 \textit {\_R1} -70\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -\frac {4}{2+x}+\textit {\_R1} \right )}{7 \textit {\_R1}^{2}-12 \textit {\_R1} +16}\right )}{105}-\frac {32 \,{\mathrm e}^{\frac {4}{2+x}} \left (\frac {112}{\left (2+x \right )^{2}}-\frac {80}{2+x}+8\right )}{105 \left (\frac {448}{\left (2+x \right )^{3}}-\frac {288}{\left (2+x \right )^{2}}+\frac {192}{2+x}-32\right )}-\frac {32 \left (\munderset {\textit {\_R1} =\RootOf \left (7 \textit {\_Z}^{3}-18 \textit {\_Z}^{2}+48 \textit {\_Z} -32\right )}{\sum }\frac {\textit {\_R1} \left (7 \textit {\_R1} -27\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -\frac {4}{2+x}+\textit {\_R1} \right )}{7 \textit {\_R1}^{2}-12 \textit {\_R1} +16}\right )}{315}+\frac {2 \,{\mathrm e}^{\frac {4}{2+x}} \left (\frac {16}{\left (2+x \right )^{2}}+\frac {80}{2+x}-16\right )}{7 \left (\frac {448}{\left (2+x \right )^{3}}-\frac {288}{\left (2+x \right )^{2}}+\frac {192}{2+x}-32\right )}+\frac {2 \left (\munderset {\textit {\_R1} =\RootOf \left (7 \textit {\_Z}^{3}-18 \textit {\_Z}^{2}+48 \textit {\_Z} -32\right )}{\sum }\frac {\left (\textit {\_R1}^{2}+34 \textit {\_R1} -20\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -\frac {4}{2+x}+\textit {\_R1} \right )}{7 \textit {\_R1}^{2}-12 \textit {\_R1} +16}\right )}{21}-\frac {12 \,{\mathrm e}^{\frac {4}{2+x}} \left (\frac {1264}{\left (2+x \right )^{2}}-\frac {320}{2+x}+16\right )}{245 \left (\frac {448}{\left (2+x \right )^{3}}-\frac {288}{\left (2+x \right )^{2}}+\frac {192}{2+x}-32\right )}-\frac {2 \left (\munderset {\textit {\_R1} =\RootOf \left (7 \textit {\_Z}^{3}-18 \textit {\_Z}^{2}+48 \textit {\_Z} -32\right )}{\sum }\frac {\left (263 \textit {\_R1}^{2}-48 \textit {\_R1} -80\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -\frac {4}{2+x}+\textit {\_R1} \right )}{7 \textit {\_R1}^{2}-12 \textit {\_R1} +16}\right )}{245}-\frac {{\mathrm e}^{\frac {4}{2+x}}}{7}+\frac {4 \,{\mathrm e}^{\frac {4}{2+x}} \left (\frac {6896}{\left (2+x \right )^{2}}-\frac {7360}{2+x}+1264\right )}{735 \left (\frac {448}{\left (2+x \right )^{3}}-\frac {288}{\left (2+x \right )^{2}}+\frac {192}{2+x}-32\right )}+\frac {32 \left (\munderset {\textit {\_R1} =\RootOf \left (7 \textit {\_Z}^{3}-18 \textit {\_Z}^{2}+48 \textit {\_Z} -32\right )}{\sum }\frac {\left (172 \textit {\_R1}^{2}-447 \textit {\_R1} +270\right ) {\mathrm e}^{\textit {\_R1}} \expIntegralEi \left (1, -\frac {4}{2+x}+\textit {\_R1} \right )}{7 \textit {\_R1}^{2}-12 \textit {\_R1} +16}\right )}{2205}\) | \(546\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.55, size = 20, normalized size = 0.71 \begin {gather*} \frac {2 \, e^{\left (\frac {4}{x + 2}\right )}}{x^{3} - 3 \, x - 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.23, size = 22, normalized size = 0.79 \begin {gather*} -\frac {2\,{\mathrm {e}}^{\frac {4}{x+2}}}{-x^3+3\,x+12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 15, normalized size = 0.54 \begin {gather*} \frac {2 e^{\frac {4}{x + 2}}}{x^{3} - 3 x - 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________