Optimal. Leaf size=28 \[ x+\frac {\log \left (x \left (-5 e^{-e^x-x}+(-1+x) x\right )\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 31.45, antiderivative size = 32, normalized size of antiderivative = 1.14, number of steps used = 76, number of rules used = 5, integrand size = 117, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {6742, 6688, 1620, 2551, 77} \begin {gather*} \frac {\log \left (-\left ((1-x) x^2\right )-5 e^{-x-e^x} x\right )}{x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 77
Rule 1620
Rule 2551
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {5 e^{-e^x} \left (5-e^{e^x}+e^{e^x} x+e^{e^x} x^2\right )}{(-1+x) x^2 \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}+\frac {e^{-e^x} \left (5-2 e^{e^x}+3 e^{e^x} x-e^{e^x} x^2+e^{e^x} x^3+e^{e^x} \log \left (x \left (-5 e^{-e^x-x}+(-1+x) x\right )\right )-e^{e^x} x \log \left (x \left (-5 e^{-e^x-x}+(-1+x) x\right )\right )\right )}{(-1+x) x^2}\right ) \, dx\\ &=5 \int \frac {e^{-e^x} \left (5-e^{e^x}+e^{e^x} x+e^{e^x} x^2\right )}{(-1+x) x^2 \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx+\int \frac {e^{-e^x} \left (5-2 e^{e^x}+3 e^{e^x} x-e^{e^x} x^2+e^{e^x} x^3+e^{e^x} \log \left (x \left (-5 e^{-e^x-x}+(-1+x) x\right )\right )-e^{e^x} x \log \left (x \left (-5 e^{-e^x-x}+(-1+x) x\right )\right )\right )}{(-1+x) x^2} \, dx\\ &=5 \int \frac {e^{-e^x} \left (5+e^{e^x} \left (-1+x+x^2\right )\right )}{(1-x) x^2 \left (5-e^{e^x+x} (-1+x) x\right )} \, dx+\int \frac {e^{-e^x} \left (-5-e^{e^x} \left (-2+3 x-x^2+x^3\right )+e^{e^x} (-1+x) \log \left (x \left (-5 e^{-e^x-x}+(-1+x) x\right )\right )\right )}{(1-x) x^2} \, dx\\ &=5 \int \left (\frac {e^{-e^x} \left (5-e^{e^x}+e^{e^x} x+e^{e^x} x^2\right )}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}-\frac {e^{-e^x} \left (5-e^{e^x}+e^{e^x} x+e^{e^x} x^2\right )}{x^2 \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}-\frac {e^{-e^x} \left (5-e^{e^x}+e^{e^x} x+e^{e^x} x^2\right )}{x \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}\right ) \, dx+\int \left (\frac {5 e^{-e^x}}{(-1+x) x^2}+\frac {-2+3 x-x^2+x^3+\log \left (x \left (-5 e^{-e^x-x}+(-1+x) x\right )\right )-x \log \left (x \left (-5 e^{-e^x-x}+(-1+x) x\right )\right )}{(-1+x) x^2}\right ) \, dx\\ &=5 \int \frac {e^{-e^x}}{(-1+x) x^2} \, dx+5 \int \frac {e^{-e^x} \left (5-e^{e^x}+e^{e^x} x+e^{e^x} x^2\right )}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-5 \int \frac {e^{-e^x} \left (5-e^{e^x}+e^{e^x} x+e^{e^x} x^2\right )}{x^2 \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-5 \int \frac {e^{-e^x} \left (5-e^{e^x}+e^{e^x} x+e^{e^x} x^2\right )}{x \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx+\int \frac {-2+3 x-x^2+x^3+\log \left (x \left (-5 e^{-e^x-x}+(-1+x) x\right )\right )-x \log \left (x \left (-5 e^{-e^x-x}+(-1+x) x\right )\right )}{(-1+x) x^2} \, dx\\ &=5 \int \left (\frac {e^{-e^x}}{-1+x}-\frac {e^{-e^x}}{x^2}-\frac {e^{-e^x}}{x}\right ) \, dx-5 \int \frac {e^{-e^x} \left (-5-e^{e^x} \left (-1+x+x^2\right )\right )}{x^2 \left (5-e^{e^x+x} (-1+x) x\right )} \, dx-5 \int \frac {e^{-e^x} \left (-5-e^{e^x} \left (-1+x+x^2\right )\right )}{x \left (5-e^{e^x+x} (-1+x) x\right )} \, dx+5 \int \frac {e^{-e^x} \left (5+e^{e^x} \left (-1+x+x^2\right )\right )}{(1-x) \left (5-e^{e^x+x} (-1+x) x\right )} \, dx+\int \frac {2-3 x+x^2-x^3+(-1+x) \log \left (x \left (-5 e^{-e^x-x}+(-1+x) x\right )\right )}{(1-x) x^2} \, dx\\ &=5 \int \frac {e^{-e^x}}{-1+x} \, dx-5 \int \frac {e^{-e^x}}{x^2} \, dx-5 \int \frac {e^{-e^x}}{x} \, dx-5 \int \left (\frac {1}{-5-e^{e^x+x} x+e^{e^x+x} x^2}-\frac {1}{x^2 \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}+\frac {5 e^{-e^x}}{x^2 \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}+\frac {1}{x \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}\right ) \, dx-5 \int \left (\frac {1}{-5-e^{e^x+x} x+e^{e^x+x} x^2}-\frac {1}{x \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}+\frac {5 e^{-e^x}}{x \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}+\frac {x}{-5-e^{e^x+x} x+e^{e^x+x} x^2}\right ) \, dx+5 \int \left (-\frac {1}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}+\frac {5 e^{-e^x}}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}+\frac {x}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}+\frac {x^2}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}\right ) \, dx+\int \left (\frac {-2+3 x-x^2+x^3}{(-1+x) x^2}-\frac {\log \left (-5 e^{-e^x-x} x+(-1+x) x^2\right )}{x^2}\right ) \, dx\\ &=5 \int \frac {e^{-e^x}}{-1+x} \, dx-5 \int \frac {e^{-e^x}}{x^2} \, dx-5 \int \frac {e^{-e^x}}{x} \, dx-2 \left (5 \int \frac {1}{-5-e^{e^x+x} x+e^{e^x+x} x^2} \, dx\right )-5 \int \frac {1}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx+5 \int \frac {1}{x^2 \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-5 \int \frac {x}{-5-e^{e^x+x} x+e^{e^x+x} x^2} \, dx+5 \int \frac {x}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx+5 \int \frac {x^2}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx+25 \int \frac {e^{-e^x}}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-25 \int \frac {e^{-e^x}}{x^2 \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-25 \int \frac {e^{-e^x}}{x \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx+\int \frac {-2+3 x-x^2+x^3}{(-1+x) x^2} \, dx-\int \frac {\log \left (-5 e^{-e^x-x} x+(-1+x) x^2\right )}{x^2} \, dx\\ &=\frac {\log \left (-5 e^{-e^x-x} x-(1-x) x^2\right )}{x}+5 \int \frac {e^{-e^x}}{-1+x} \, dx-5 \int \frac {e^{-e^x}}{x^2} \, dx-5 \int \frac {e^{-e^x}}{x} \, dx-2 \left (5 \int \frac {1}{-5+e^{e^x+x} (-1+x) x} \, dx\right )+5 \int \frac {1}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx-5 \int \frac {x}{-5+e^{e^x+x} (-1+x) x} \, dx-5 \int \frac {1}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx+5 \int \left (\frac {1}{-5-e^{e^x+x} x+e^{e^x+x} x^2}+\frac {1}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}\right ) \, dx+5 \int \left (\frac {1}{-5-e^{e^x+x} x+e^{e^x+x} x^2}+\frac {1}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}+\frac {x}{-5-e^{e^x+x} x+e^{e^x+x} x^2}\right ) \, dx-25 \int \frac {e^{-e^x}}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx-25 \int \frac {e^{-e^x}}{x \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx+25 \int \frac {e^{-e^x}}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx+\int \left (1+\frac {1}{-1+x}+\frac {2}{x^2}-\frac {1}{x}\right ) \, dx-\int \frac {5-\left (5+5 e^x-2 e^{e^x+x}\right ) x-3 e^{e^x+x} x^2}{x^2 \left (5-e^{e^x+x} (-1+x) x\right )} \, dx\\ &=-\frac {2}{x}+x+\log (1-x)-\log (x)+\frac {\log \left (-5 e^{-e^x-x} x-(1-x) x^2\right )}{x}+5 \int \frac {e^{-e^x}}{-1+x} \, dx-5 \int \frac {e^{-e^x}}{x^2} \, dx-5 \int \frac {e^{-e^x}}{x} \, dx-2 \left (5 \int \frac {1}{-5+e^{e^x+x} (-1+x) x} \, dx\right )+5 \int \frac {1}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx-5 \int \frac {x}{-5+e^{e^x+x} (-1+x) x} \, dx+2 \left (5 \int \frac {1}{-5-e^{e^x+x} x+e^{e^x+x} x^2} \, dx\right )+5 \int \frac {1}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx+5 \int \frac {x}{-5-e^{e^x+x} x+e^{e^x+x} x^2} \, dx-25 \int \frac {e^{-e^x}}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx-25 \int \frac {e^{-e^x}}{x \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx+25 \int \frac {e^{-e^x}}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-\int \left (\frac {e^{-e^x} \left (5-2 e^{e^x}+3 e^{e^x} x\right )}{(-1+x) x^2}+\frac {5 e^{-e^x} \left (5-e^{e^x}+e^{e^x} x+e^{e^x} x^2\right )}{(-1+x) x^2 \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}\right ) \, dx\\ &=-\frac {2}{x}+x+\log (1-x)-\log (x)+\frac {\log \left (-5 e^{-e^x-x} x-(1-x) x^2\right )}{x}+5 \int \frac {e^{-e^x}}{-1+x} \, dx-5 \int \frac {e^{-e^x}}{x^2} \, dx-5 \int \frac {e^{-e^x}}{x} \, dx+5 \int \frac {1}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx+5 \int \frac {1}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-5 \int \frac {e^{-e^x} \left (5-e^{e^x}+e^{e^x} x+e^{e^x} x^2\right )}{(-1+x) x^2 \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-25 \int \frac {e^{-e^x}}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx-25 \int \frac {e^{-e^x}}{x \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx+25 \int \frac {e^{-e^x}}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-\int \frac {e^{-e^x} \left (5-2 e^{e^x}+3 e^{e^x} x\right )}{(-1+x) x^2} \, dx\\ &=-\frac {2}{x}+x+\log (1-x)-\log (x)+\frac {\log \left (-5 e^{-e^x-x} x-(1-x) x^2\right )}{x}+5 \int \frac {e^{-e^x}}{-1+x} \, dx-5 \int \frac {e^{-e^x}}{x^2} \, dx-5 \int \frac {e^{-e^x}}{x} \, dx+5 \int \frac {1}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx+5 \int \frac {1}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-5 \int \frac {e^{-e^x} \left (5+e^{e^x} \left (-1+x+x^2\right )\right )}{(1-x) x^2 \left (5-e^{e^x+x} (-1+x) x\right )} \, dx-25 \int \frac {e^{-e^x}}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx-25 \int \frac {e^{-e^x}}{x \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx+25 \int \frac {e^{-e^x}}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-\int \frac {2-5 e^{-e^x}-3 x}{(1-x) x^2} \, dx\\ &=-\frac {2}{x}+x+\log (1-x)-\log (x)+\frac {\log \left (-5 e^{-e^x-x} x-(1-x) x^2\right )}{x}+5 \int \frac {e^{-e^x}}{-1+x} \, dx-5 \int \frac {e^{-e^x}}{x^2} \, dx-5 \int \frac {e^{-e^x}}{x} \, dx+5 \int \frac {1}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx+5 \int \frac {1}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-5 \int \left (\frac {e^{-e^x} \left (5-e^{e^x}+e^{e^x} x+e^{e^x} x^2\right )}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}-\frac {e^{-e^x} \left (5-e^{e^x}+e^{e^x} x+e^{e^x} x^2\right )}{x^2 \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}-\frac {e^{-e^x} \left (5-e^{e^x}+e^{e^x} x+e^{e^x} x^2\right )}{x \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}\right ) \, dx-25 \int \frac {e^{-e^x}}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx-25 \int \frac {e^{-e^x}}{x \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx+25 \int \frac {e^{-e^x}}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-\int \left (\frac {5 e^{-e^x}}{(-1+x) x^2}+\frac {-2+3 x}{(-1+x) x^2}\right ) \, dx\\ &=-\frac {2}{x}+x+\log (1-x)-\log (x)+\frac {\log \left (-5 e^{-e^x-x} x-(1-x) x^2\right )}{x}+5 \int \frac {e^{-e^x}}{-1+x} \, dx-5 \int \frac {e^{-e^x}}{x^2} \, dx-5 \int \frac {e^{-e^x}}{(-1+x) x^2} \, dx-5 \int \frac {e^{-e^x}}{x} \, dx+5 \int \frac {1}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx+5 \int \frac {1}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-5 \int \frac {e^{-e^x} \left (5-e^{e^x}+e^{e^x} x+e^{e^x} x^2\right )}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx+5 \int \frac {e^{-e^x} \left (5-e^{e^x}+e^{e^x} x+e^{e^x} x^2\right )}{x^2 \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx+5 \int \frac {e^{-e^x} \left (5-e^{e^x}+e^{e^x} x+e^{e^x} x^2\right )}{x \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-25 \int \frac {e^{-e^x}}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx-25 \int \frac {e^{-e^x}}{x \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx+25 \int \frac {e^{-e^x}}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-\int \frac {-2+3 x}{(-1+x) x^2} \, dx\\ &=-\frac {2}{x}+x+\log (1-x)-\log (x)+\frac {\log \left (-5 e^{-e^x-x} x-(1-x) x^2\right )}{x}-5 \int \left (\frac {e^{-e^x}}{-1+x}-\frac {e^{-e^x}}{x^2}-\frac {e^{-e^x}}{x}\right ) \, dx+5 \int \frac {e^{-e^x}}{-1+x} \, dx-5 \int \frac {e^{-e^x}}{x^2} \, dx-5 \int \frac {e^{-e^x}}{x} \, dx+5 \int \frac {1}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx+5 \int \frac {1}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx+5 \int \frac {e^{-e^x} \left (-5-e^{e^x} \left (-1+x+x^2\right )\right )}{x^2 \left (5-e^{e^x+x} (-1+x) x\right )} \, dx+5 \int \frac {e^{-e^x} \left (-5-e^{e^x} \left (-1+x+x^2\right )\right )}{x \left (5-e^{e^x+x} (-1+x) x\right )} \, dx-5 \int \frac {e^{-e^x} \left (5+e^{e^x} \left (-1+x+x^2\right )\right )}{(1-x) \left (5-e^{e^x+x} (-1+x) x\right )} \, dx-25 \int \frac {e^{-e^x}}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx-25 \int \frac {e^{-e^x}}{x \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx+25 \int \frac {e^{-e^x}}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-\int \left (\frac {1}{-1+x}+\frac {2}{x^2}-\frac {1}{x}\right ) \, dx\\ &=x+\frac {\log \left (-5 e^{-e^x-x} x-(1-x) x^2\right )}{x}+5 \int \frac {1}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx+5 \int \frac {1}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx+5 \int \left (\frac {1}{-5-e^{e^x+x} x+e^{e^x+x} x^2}-\frac {1}{x^2 \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}+\frac {5 e^{-e^x}}{x^2 \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}+\frac {1}{x \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}\right ) \, dx+5 \int \left (\frac {1}{-5-e^{e^x+x} x+e^{e^x+x} x^2}-\frac {1}{x \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}+\frac {5 e^{-e^x}}{x \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}+\frac {x}{-5-e^{e^x+x} x+e^{e^x+x} x^2}\right ) \, dx-5 \int \left (-\frac {1}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}+\frac {5 e^{-e^x}}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}+\frac {x}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}+\frac {x^2}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}\right ) \, dx-25 \int \frac {e^{-e^x}}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx-25 \int \frac {e^{-e^x}}{x \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx+25 \int \frac {e^{-e^x}}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx\\ &=x+\frac {\log \left (-5 e^{-e^x-x} x-(1-x) x^2\right )}{x}+5 \int \frac {1}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx+2 \left (5 \int \frac {1}{-5-e^{e^x+x} x+e^{e^x+x} x^2} \, dx\right )+2 \left (5 \int \frac {1}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx\right )-5 \int \frac {1}{x^2 \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx+5 \int \frac {x}{-5-e^{e^x+x} x+e^{e^x+x} x^2} \, dx-5 \int \frac {x}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-5 \int \frac {x^2}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx-25 \int \frac {e^{-e^x}}{x^2 \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx-25 \int \frac {e^{-e^x}}{x \left (-5+e^{e^x+x} (-1+x) x\right )} \, dx+25 \int \frac {e^{-e^x}}{x^2 \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx+25 \int \frac {e^{-e^x}}{x \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx\\ &=x+\frac {\log \left (-5 e^{-e^x-x} x-(1-x) x^2\right )}{x}+2 \left (5 \int \frac {1}{-5+e^{e^x+x} (-1+x) x} \, dx\right )+5 \int \frac {x}{-5+e^{e^x+x} (-1+x) x} \, dx+2 \left (5 \int \frac {1}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )} \, dx\right )-5 \int \left (\frac {1}{-5-e^{e^x+x} x+e^{e^x+x} x^2}+\frac {1}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}\right ) \, dx-5 \int \left (\frac {1}{-5-e^{e^x+x} x+e^{e^x+x} x^2}+\frac {1}{(-1+x) \left (-5-e^{e^x+x} x+e^{e^x+x} x^2\right )}+\frac {x}{-5-e^{e^x+x} x+e^{e^x+x} x^2}\right ) \, dx\\ &=x+\frac {\log \left (-5 e^{-e^x-x} x-(1-x) x^2\right )}{x}+2 \left (5 \int \frac {1}{-5+e^{e^x+x} (-1+x) x} \, dx\right )+5 \int \frac {x}{-5+e^{e^x+x} (-1+x) x} \, dx-2 \left (5 \int \frac {1}{-5-e^{e^x+x} x+e^{e^x+x} x^2} \, dx\right )-5 \int \frac {x}{-5-e^{e^x+x} x+e^{e^x+x} x^2} \, dx\\ &=x+\frac {\log \left (-5 e^{-e^x-x} x-(1-x) x^2\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 29, normalized size = 1.04 \begin {gather*} 1+x+\frac {\log \left (x \left (-5 e^{-e^x-x}+(-1+x) x\right )\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 32, normalized size = 1.14 \begin {gather*} \frac {x^{2} + \log \left (x^{3} - x^{2} - x e^{\left (-x - e^{x} + \log \relax (5)\right )}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 34, normalized size = 1.21 \begin {gather*} \frac {x^{2} - e^{x} + \log \left (x^{2} e^{\left (x + e^{x}\right )} - x e^{\left (x + e^{x}\right )} - 5\right ) + \log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.24, size = 0, normalized size = 0.00 \[\int \frac {\left (-{\mathrm e}^{\ln \left (5 \,{\mathrm e}^{-{\mathrm e}^{x}}\right )-x}+x^{2}-x \right ) \ln \left (-x \,{\mathrm e}^{\ln \left (5 \,{\mathrm e}^{-{\mathrm e}^{x}}\right )-x}+x^{3}-x^{2}\right )+\left (-{\mathrm e}^{x} x +x^{2}-x +1\right ) {\mathrm e}^{\ln \left (5 \,{\mathrm e}^{-{\mathrm e}^{x}}\right )-x}-x^{4}+x^{3}-3 x^{2}+2 x}{x^{2} {\mathrm e}^{\ln \left (5 \,{\mathrm e}^{-{\mathrm e}^{x}}\right )-x}-x^{4}+x^{3}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 30, normalized size = 1.07 \begin {gather*} \frac {x^{2} - e^{x} + \log \left ({\left (x^{2} - x\right )} e^{\left (x + e^{x}\right )} - 5\right ) + \log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.48, size = 28, normalized size = 1.00 \begin {gather*} x+\frac {\ln \left (x^3-x^2-5\,x\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-{\mathrm {e}}^x}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.28, size = 22, normalized size = 0.79 \begin {gather*} x + \frac {\log {\left (x^{3} - x^{2} - 5 x e^{- x} e^{- e^{x}} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________