Optimal. Leaf size=22 \[ \frac {e^{-\frac {x^2}{e^5}} x}{4 (1-x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 33, normalized size of antiderivative = 1.50, number of steps used = 3, number of rules used = 3, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {27, 12, 2288} \begin {gather*} \frac {e^{-\frac {x^2}{e^5}} \left (x^2-x^3\right )}{4 (1-x)^2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-5-\frac {x^2}{e^5}} \left (e^5-2 x^2+2 x^3\right )}{4 (-1+x)^2} \, dx\\ &=\frac {1}{4} \int \frac {e^{-5-\frac {x^2}{e^5}} \left (e^5-2 x^2+2 x^3\right )}{(-1+x)^2} \, dx\\ &=\frac {e^{-\frac {x^2}{e^5}} \left (x^2-x^3\right )}{4 (1-x)^2 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 20, normalized size = 0.91 \begin {gather*} -\frac {e^{-\frac {x^2}{e^5}} x}{4 (-1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 23, normalized size = 1.05 \begin {gather*} -\frac {x e^{\left (-{\left (x^{2} + 5 \, e^{5}\right )} e^{\left (-5\right )} + 5\right )}}{4 \, {\left (x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 16, normalized size = 0.73 \begin {gather*} -\frac {x e^{\left (-x^{2} e^{\left (-5\right )}\right )}}{4 \, {\left (x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.38, size = 17, normalized size = 0.77
method | result | size |
risch | \(-\frac {x \,{\mathrm e}^{-x^{2} {\mathrm e}^{-5}}}{4 \left (x -1\right )}\) | \(17\) |
gosper | \(-\frac {x \,{\mathrm e}^{-x^{2} {\mathrm e}^{-5}}}{4 \left (x -1\right )}\) | \(20\) |
norman | \(-\frac {x \,{\mathrm e}^{-x^{2} {\mathrm e}^{-5}}}{4 \left (x -1\right )}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 16, normalized size = 0.73 \begin {gather*} -\frac {x e^{\left (-x^{2} e^{\left (-5\right )}\right )}}{4 \, {\left (x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.22, size = 18, normalized size = 0.82 \begin {gather*} -\frac {x\,{\mathrm {e}}^{-x^2\,{\mathrm {e}}^{-5}}}{4\,\left (x-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 15, normalized size = 0.68 \begin {gather*} - \frac {x e^{- \frac {x^{2}}{e^{5}}}}{4 x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________