Optimal. Leaf size=26 \[ -2-e^{3 \log ^2\left (\log ^2(2 x)\right )}+\left (-2+4 x^2\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.49, antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.102, Rules used = {6742, 14, 2276, 2204, 2209} \begin {gather*} 16 x^4-16 x^2-e^{3 \log ^2\left (\log ^2(2 x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2204
Rule 2209
Rule 2276
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (32 x \left (-1+2 x^2\right )-\frac {12 e^{3 \log ^2\left (\log ^2(2 x)\right )} \log \left (\log ^2(2 x)\right )}{x \log (2 x)}\right ) \, dx\\ &=-\left (12 \int \frac {e^{3 \log ^2\left (\log ^2(2 x)\right )} \log \left (\log ^2(2 x)\right )}{x \log (2 x)} \, dx\right )+32 \int x \left (-1+2 x^2\right ) \, dx\\ &=-\left (12 \operatorname {Subst}\left (\int \frac {e^{3 \log ^2\left (x^2\right )} \log \left (x^2\right )}{x} \, dx,x,\log (2 x)\right )\right )+32 \int \left (-x+2 x^3\right ) \, dx\\ &=-16 x^2+16 x^4-6 \operatorname {Subst}\left (\int e^{3 x^2} x \, dx,x,\log \left (\log ^2(2 x)\right )\right )\\ &=-e^{3 \log ^2\left (\log ^2(2 x)\right )}-16 x^2+16 x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 26, normalized size = 1.00 \begin {gather*} -e^{3 \log ^2\left (\log ^2(2 x)\right )}-16 x^2+16 x^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 25, normalized size = 0.96 \begin {gather*} 16 \, x^{4} - 16 \, x^{2} - e^{\left (3 \, \log \left (\log \left (2 \, x\right )^{2}\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.64, size = 26, normalized size = 1.00
method | result | size |
default | \(16 x^{4}-16 x^{2}-{\mathrm e}^{3 \ln \left (\ln \left (2 x \right )^{2}\right )^{2}}\) | \(26\) |
risch | \(16 x^{4}-16 x^{2}-{\mathrm e}^{\frac {3 \left (i \pi \mathrm {csgn}\left (i \ln \left (2 x \right )^{2}\right )^{3}-2 i \pi \mathrm {csgn}\left (i \ln \left (2 x \right )^{2}\right )^{2} \mathrm {csgn}\left (i \ln \left (2 x \right )\right )+i \pi \,\mathrm {csgn}\left (i \ln \left (2 x \right )^{2}\right ) \mathrm {csgn}\left (i \ln \left (2 x \right )\right )^{2}-4 \ln \left (\ln \left (2 x \right )\right )\right )^{2}}{4}}\) | \(91\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 25, normalized size = 0.96 \begin {gather*} 16 \, x^{4} - 16 \, x^{2} - e^{\left (3 \, \log \left (\log \left (2 \, x\right )^{2}\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.18, size = 34, normalized size = 1.31 \begin {gather*} 16\,x^4-16\,x^2-{\mathrm {e}}^{3\,{\ln \left ({\ln \relax (x)}^2+2\,\ln \relax (2)\,\ln \relax (x)+{\ln \relax (2)}^2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 22, normalized size = 0.85 \begin {gather*} 16 x^{4} - 16 x^{2} - e^{3 \log {\left (\log {\left (2 x \right )}^{2} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________