Optimal. Leaf size=18 \[ 1+x+\log \left (1+\frac {e^{\frac {12}{\log (x)}}}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^2 \log ^2(x)+e^{\frac {12}{\log (x)}} \left (-12+(-1+x) \log ^2(x)\right )}{e^{\frac {12}{\log (x)}} x \log ^2(x)+x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2 \log ^2(x)+e^{\frac {12}{\log (x)}} \left (-12+(-1+x) \log ^2(x)\right )}{x \left (e^{\frac {12}{\log (x)}}+x\right ) \log ^2(x)} \, dx\\ &=\int \left (\frac {12+\log ^2(x)}{\left (e^{\frac {12}{\log (x)}}+x\right ) \log ^2(x)}+\frac {-12-\log ^2(x)+x \log ^2(x)}{x \log ^2(x)}\right ) \, dx\\ &=\int \frac {12+\log ^2(x)}{\left (e^{\frac {12}{\log (x)}}+x\right ) \log ^2(x)} \, dx+\int \frac {-12-\log ^2(x)+x \log ^2(x)}{x \log ^2(x)} \, dx\\ &=\int \left (1-\frac {1}{x}-\frac {12}{x \log ^2(x)}\right ) \, dx+\int \left (\frac {1}{e^{\frac {12}{\log (x)}}+x}+\frac {12}{\left (e^{\frac {12}{\log (x)}}+x\right ) \log ^2(x)}\right ) \, dx\\ &=x-\log (x)-12 \int \frac {1}{x \log ^2(x)} \, dx+12 \int \frac {1}{\left (e^{\frac {12}{\log (x)}}+x\right ) \log ^2(x)} \, dx+\int \frac {1}{e^{\frac {12}{\log (x)}}+x} \, dx\\ &=x-\log (x)+12 \int \frac {1}{\left (e^{\frac {12}{\log (x)}}+x\right ) \log ^2(x)} \, dx-12 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (x)\right )+\int \frac {1}{e^{\frac {12}{\log (x)}}+x} \, dx\\ &=x+\frac {12}{\log (x)}-\log (x)+12 \int \frac {1}{\left (e^{\frac {12}{\log (x)}}+x\right ) \log ^2(x)} \, dx+\int \frac {1}{e^{\frac {12}{\log (x)}}+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 17, normalized size = 0.94 \begin {gather*} x-\log (x)+\log \left (e^{\frac {12}{\log (x)}}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 16, normalized size = 0.89 \begin {gather*} x + \log \left (x + e^{\frac {12}{\log \relax (x)}}\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 16, normalized size = 0.89 \begin {gather*} x + \log \left (x + e^{\frac {12}{\log \relax (x)}}\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 17, normalized size = 0.94
method | result | size |
norman | \(x -\ln \relax (x )+\ln \left ({\mathrm e}^{\frac {12}{\ln \relax (x )}}+x \right )\) | \(17\) |
risch | \(x -\ln \relax (x )+\ln \left ({\mathrm e}^{\frac {12}{\ln \relax (x )}}+x \right )\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 16, normalized size = 0.89 \begin {gather*} x + \log \left (x + e^{\frac {12}{\log \relax (x)}}\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.34, size = 16, normalized size = 0.89 \begin {gather*} x+\ln \left (x+{\mathrm {e}}^{\frac {12}{\ln \relax (x)}}\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 14, normalized size = 0.78 \begin {gather*} x - \log {\relax (x )} + \log {\left (x + e^{\frac {12}{\log {\relax (x )}}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________