Optimal. Leaf size=32 \[ \frac {e^{e^{-2+x}} \log (\log (x))}{x \left (1+\frac {x^2}{e^4 (5-x)}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 22.87, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{e^{-2+x}} \left (e^8 \left (25-10 x+x^2\right )+e^4 \left (5 x^2-x^3\right )\right )+e^{e^{-2+x}} \left (e^8 \left (-25+10 x-x^2\right )+e^4 \left (-15 x^2+2 x^3\right )+e^{-2+x} \left (e^8 \left (25 x-10 x^2+x^3\right )+e^4 \left (5 x^3-x^4\right )\right )\right ) \log (x) \log (\log (x))}{\left (x^6+e^8 \left (25 x^2-10 x^3+x^4\right )+e^4 \left (10 x^4-2 x^5\right )\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2+e^{-2+x}} \left (-e^2 (-5+x) \left (-e^4 (-5+x)+x^2\right )-\left (e^6 (-5+x)^2-e^{4+x} (-5+x)^2 x+e^2 (15-2 x) x^2+e^x (-5+x) x^3\right ) \log (x) \log (\log (x))\right )}{x^2 \left (5 e^4-e^4 x+x^2\right )^2 \log (x)} \, dx\\ &=\int \left (-\frac {e^{2+e^{-2+x}+x} (-5+x) \log (\log (x))}{x \left (5 e^4-e^4 x+x^2\right )}+\frac {e^{4+e^{-2+x}} \left (25 e^4-10 e^4 x+5 \left (1+\frac {e^4}{5}\right ) x^2-x^3-25 e^4 \log (x) \log (\log (x))+10 e^4 x \log (x) \log (\log (x))-15 \left (1+\frac {e^4}{15}\right ) x^2 \log (x) \log (\log (x))+2 x^3 \log (x) \log (\log (x))\right )}{x^2 \left (5 e^4-e^4 x+x^2\right )^2 \log (x)}\right ) \, dx\\ &=-\int \frac {e^{2+e^{-2+x}+x} (-5+x) \log (\log (x))}{x \left (5 e^4-e^4 x+x^2\right )} \, dx+\int \frac {e^{4+e^{-2+x}} \left (25 e^4-10 e^4 x+5 \left (1+\frac {e^4}{5}\right ) x^2-x^3-25 e^4 \log (x) \log (\log (x))+10 e^4 x \log (x) \log (\log (x))-15 \left (1+\frac {e^4}{15}\right ) x^2 \log (x) \log (\log (x))+2 x^3 \log (x) \log (\log (x))\right )}{x^2 \left (5 e^4-e^4 x+x^2\right )^2 \log (x)} \, dx\\ &=-\int \left (-\frac {e^{-2+e^{-2+x}+x} \log (\log (x))}{x}-\frac {e^{-2+e^{-2+x}+x} x \log (\log (x))}{-5 e^4+e^4 x-x^2}\right ) \, dx+\int \frac {e^{4+e^{-2+x}} \left (-\left ((-5+x) \left (-e^4 (-5+x)+x^2\right )\right )-\left (e^4 (-5+x)^2+(15-2 x) x^2\right ) \log (x) \log (\log (x))\right )}{x^2 \left (5 e^4-e^4 x+x^2\right )^2 \log (x)} \, dx\\ &=\int \frac {e^{-2+e^{-2+x}+x} \log (\log (x))}{x} \, dx+\int \frac {e^{-2+e^{-2+x}+x} x \log (\log (x))}{-5 e^4+e^4 x-x^2} \, dx+\int \left (\frac {e^{4+e^{-2+x}} (5-x)}{x^2 \left (5 e^4-e^4 x+x^2\right ) \log (x)}+\frac {e^{4+e^{-2+x}} \left (-25 e^4+10 e^4 x-\left (15+e^4\right ) x^2+2 x^3\right ) \log (\log (x))}{x^2 \left (5 e^4-e^4 x+x^2\right )^2}\right ) \, dx\\ &=\int \frac {e^{4+e^{-2+x}} (5-x)}{x^2 \left (5 e^4-e^4 x+x^2\right ) \log (x)} \, dx+\int \frac {e^{-2+e^{-2+x}+x} \log (\log (x))}{x} \, dx+\int \frac {e^{4+e^{-2+x}} \left (-25 e^4+10 e^4 x-\left (15+e^4\right ) x^2+2 x^3\right ) \log (\log (x))}{x^2 \left (5 e^4-e^4 x+x^2\right )^2} \, dx+\int \left (\frac {e^{-2+e^{-2+x}+x} \left (1-\frac {e^2}{\sqrt {-20+e^4}}\right ) \log (\log (x))}{e^4-e^2 \sqrt {-20+e^4}-2 x}+\frac {e^{-2+e^{-2+x}+x} \left (1+\frac {e^2}{\sqrt {-20+e^4}}\right ) \log (\log (x))}{e^4+e^2 \sqrt {-20+e^4}-2 x}\right ) \, dx\\ &=\left (1-\frac {e^2}{\sqrt {-20+e^4}}\right ) \int \frac {e^{-2+e^{-2+x}+x} \log (\log (x))}{e^4-e^2 \sqrt {-20+e^4}-2 x} \, dx+\left (1+\frac {e^2}{\sqrt {-20+e^4}}\right ) \int \frac {e^{-2+e^{-2+x}+x} \log (\log (x))}{e^4+e^2 \sqrt {-20+e^4}-2 x} \, dx+\int \left (\frac {e^{e^{-2+x}}}{x^2 \log (x)}+\frac {e^{e^{-2+x}}}{\left (-5 e^4+e^4 x-x^2\right ) \log (x)}\right ) \, dx+\int \frac {e^{-2+e^{-2+x}+x} \log (\log (x))}{x} \, dx+\int \left (-\frac {e^{e^{-2+x}} \log (\log (x))}{x^2}+\frac {e^{4+e^{-2+x}} (-10+x) \log (\log (x))}{\left (-5 e^4+e^4 x-x^2\right )^2}-\frac {e^{e^{-2+x}} \log (\log (x))}{-5 e^4+e^4 x-x^2}\right ) \, dx\\ &=\left (1-\frac {e^2}{\sqrt {-20+e^4}}\right ) \int \frac {e^{-2+e^{-2+x}+x} \log (\log (x))}{e^4-e^2 \sqrt {-20+e^4}-2 x} \, dx+\left (1+\frac {e^2}{\sqrt {-20+e^4}}\right ) \int \frac {e^{-2+e^{-2+x}+x} \log (\log (x))}{e^4+e^2 \sqrt {-20+e^4}-2 x} \, dx+\int \frac {e^{e^{-2+x}}}{x^2 \log (x)} \, dx+\int \frac {e^{e^{-2+x}}}{\left (-5 e^4+e^4 x-x^2\right ) \log (x)} \, dx-\int \frac {e^{e^{-2+x}} \log (\log (x))}{x^2} \, dx+\int \frac {e^{-2+e^{-2+x}+x} \log (\log (x))}{x} \, dx+\int \frac {e^{4+e^{-2+x}} (-10+x) \log (\log (x))}{\left (-5 e^4+e^4 x-x^2\right )^2} \, dx-\int \frac {e^{e^{-2+x}} \log (\log (x))}{-5 e^4+e^4 x-x^2} \, dx\\ &=\left (1-\frac {e^2}{\sqrt {-20+e^4}}\right ) \int \frac {e^{-2+e^{-2+x}+x} \log (\log (x))}{e^4-e^2 \sqrt {-20+e^4}-2 x} \, dx+\left (1+\frac {e^2}{\sqrt {-20+e^4}}\right ) \int \frac {e^{-2+e^{-2+x}+x} \log (\log (x))}{e^4+e^2 \sqrt {-20+e^4}-2 x} \, dx+\int \left (-\frac {2 e^{-2+e^{-2+x}}}{\sqrt {-20+e^4} \left (e^4-e^2 \sqrt {-20+e^4}-2 x\right ) \log (x)}+\frac {2 e^{-2+e^{-2+x}}}{\sqrt {-20+e^4} \left (e^4+e^2 \sqrt {-20+e^4}-2 x\right ) \log (x)}\right ) \, dx+\int \frac {e^{e^{-2+x}}}{x^2 \log (x)} \, dx-\int \frac {e^{e^{-2+x}} \log (\log (x))}{x^2} \, dx+\int \frac {e^{-2+e^{-2+x}+x} \log (\log (x))}{x} \, dx-\int \left (-\frac {2 e^{-2+e^{-2+x}} \log (\log (x))}{\sqrt {-20+e^4} \left (e^4-e^2 \sqrt {-20+e^4}-2 x\right )}+\frac {2 e^{-2+e^{-2+x}} \log (\log (x))}{\sqrt {-20+e^4} \left (e^4+e^2 \sqrt {-20+e^4}-2 x\right )}\right ) \, dx+\int \left (-\frac {10 e^{4+e^{-2+x}} \log (\log (x))}{\left (-5 e^4+e^4 x-x^2\right )^2}+\frac {e^{4+e^{-2+x}} x \log (\log (x))}{\left (-5 e^4+e^4 x-x^2\right )^2}\right ) \, dx\\ &=-\left (10 \int \frac {e^{4+e^{-2+x}} \log (\log (x))}{\left (-5 e^4+e^4 x-x^2\right )^2} \, dx\right )-\frac {2 \int \frac {e^{-2+e^{-2+x}}}{\left (e^4-e^2 \sqrt {-20+e^4}-2 x\right ) \log (x)} \, dx}{\sqrt {-20+e^4}}+\frac {2 \int \frac {e^{-2+e^{-2+x}}}{\left (e^4+e^2 \sqrt {-20+e^4}-2 x\right ) \log (x)} \, dx}{\sqrt {-20+e^4}}+\frac {2 \int \frac {e^{-2+e^{-2+x}} \log (\log (x))}{e^4-e^2 \sqrt {-20+e^4}-2 x} \, dx}{\sqrt {-20+e^4}}-\frac {2 \int \frac {e^{-2+e^{-2+x}} \log (\log (x))}{e^4+e^2 \sqrt {-20+e^4}-2 x} \, dx}{\sqrt {-20+e^4}}+\left (1-\frac {e^2}{\sqrt {-20+e^4}}\right ) \int \frac {e^{-2+e^{-2+x}+x} \log (\log (x))}{e^4-e^2 \sqrt {-20+e^4}-2 x} \, dx+\left (1+\frac {e^2}{\sqrt {-20+e^4}}\right ) \int \frac {e^{-2+e^{-2+x}+x} \log (\log (x))}{e^4+e^2 \sqrt {-20+e^4}-2 x} \, dx+\int \frac {e^{e^{-2+x}}}{x^2 \log (x)} \, dx-\int \frac {e^{e^{-2+x}} \log (\log (x))}{x^2} \, dx+\int \frac {e^{-2+e^{-2+x}+x} \log (\log (x))}{x} \, dx+\int \frac {e^{4+e^{-2+x}} x \log (\log (x))}{\left (-5 e^4+e^4 x-x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 32, normalized size = 1.00 \begin {gather*} \frac {e^{4+e^{-2+x}} (-5+x) \log (\log (x))}{e^4 (-5+x) x-x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 32, normalized size = 1.00 \begin {gather*} -\frac {{\left (x - 5\right )} e^{\left (e^{\left (x - 2\right )} + 4\right )} \log \left (\log \relax (x)\right )}{x^{3} - {\left (x^{2} - 5 \, x\right )} e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left ({\left (x^{2} - 10 \, x + 25\right )} e^{8} - {\left (2 \, x^{3} - 15 \, x^{2}\right )} e^{4} - {\left ({\left (x^{3} - 10 \, x^{2} + 25 \, x\right )} e^{8} - {\left (x^{4} - 5 \, x^{3}\right )} e^{4}\right )} e^{\left (x - 2\right )}\right )} e^{\left (e^{\left (x - 2\right )}\right )} \log \relax (x) \log \left (\log \relax (x)\right ) - {\left ({\left (x^{2} - 10 \, x + 25\right )} e^{8} - {\left (x^{3} - 5 \, x^{2}\right )} e^{4}\right )} e^{\left (e^{\left (x - 2\right )}\right )}}{{\left (x^{6} + {\left (x^{4} - 10 \, x^{3} + 25 \, x^{2}\right )} e^{8} - 2 \, {\left (x^{5} - 5 \, x^{4}\right )} e^{4}\right )} \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 34, normalized size = 1.06
method | result | size |
risch | \(\frac {\ln \left (\ln \relax (x )\right ) \left (x -5\right ) {\mathrm e}^{4+{\mathrm e}^{x -2}}}{\left (x \,{\mathrm e}^{4}-x^{2}-5 \,{\mathrm e}^{4}\right ) x}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 37, normalized size = 1.16 \begin {gather*} -\frac {{\left (x e^{4} - 5 \, e^{4}\right )} e^{\left (e^{\left (x - 2\right )}\right )} \log \left (\log \relax (x)\right )}{x^{3} - x^{2} e^{4} + 5 \, x e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.93, size = 34, normalized size = 1.06 \begin {gather*} -\frac {\ln \left (\ln \relax (x)\right )\,{\mathrm {e}}^{{\mathrm {e}}^{-2}\,{\mathrm {e}}^x+4}\,\left (x-5\right )}{x\,\left (x^2-{\mathrm {e}}^4\,x+5\,{\mathrm {e}}^4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.67, size = 42, normalized size = 1.31 \begin {gather*} \frac {\left (- x e^{4} \log {\left (\log {\relax (x )} \right )} + 5 e^{4} \log {\left (\log {\relax (x )} \right )}\right ) e^{e^{x - 2}}}{x^{3} - x^{2} e^{4} + 5 x e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________