Optimal. Leaf size=28 \[ \frac {e^{-x^2} x^2 \log (5)}{x+x \log \left (x^2 \log \left (x^2\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 \log (5)+\left (-1-2 x^2\right ) \log (5) \log \left (x^2\right )+\left (1-2 x^2\right ) \log (5) \log \left (x^2\right ) \log \left (x^2 \log \left (x^2\right )\right )}{e^{x^2} \log \left (x^2\right )+2 e^{x^2} \log \left (x^2\right ) \log \left (x^2 \log \left (x^2\right )\right )+e^{x^2} \log \left (x^2\right ) \log ^2\left (x^2 \log \left (x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x^2} \log (5) \left (-2-\log \left (x^2\right ) \left (1+2 x^2+\left (-1+2 x^2\right ) \log \left (x^2 \log \left (x^2\right )\right )\right )\right )}{\log \left (x^2\right ) \left (1+\log \left (x^2 \log \left (x^2\right )\right )\right )^2} \, dx\\ &=\log (5) \int \frac {e^{-x^2} \left (-2-\log \left (x^2\right ) \left (1+2 x^2+\left (-1+2 x^2\right ) \log \left (x^2 \log \left (x^2\right )\right )\right )\right )}{\log \left (x^2\right ) \left (1+\log \left (x^2 \log \left (x^2\right )\right )\right )^2} \, dx\\ &=\log (5) \int \left (-\frac {2 e^{-x^2} \left (1+\log \left (x^2\right )\right )}{\log \left (x^2\right ) \left (1+\log \left (x^2 \log \left (x^2\right )\right )\right )^2}+\frac {e^{-x^2} \left (1-2 x^2\right )}{1+\log \left (x^2 \log \left (x^2\right )\right )}\right ) \, dx\\ &=\log (5) \int \frac {e^{-x^2} \left (1-2 x^2\right )}{1+\log \left (x^2 \log \left (x^2\right )\right )} \, dx-(2 \log (5)) \int \frac {e^{-x^2} \left (1+\log \left (x^2\right )\right )}{\log \left (x^2\right ) \left (1+\log \left (x^2 \log \left (x^2\right )\right )\right )^2} \, dx\\ &=\log (5) \int \left (\frac {e^{-x^2}}{1+\log \left (x^2 \log \left (x^2\right )\right )}-\frac {2 e^{-x^2} x^2}{1+\log \left (x^2 \log \left (x^2\right )\right )}\right ) \, dx-(2 \log (5)) \int \left (\frac {e^{-x^2}}{\left (1+\log \left (x^2 \log \left (x^2\right )\right )\right )^2}+\frac {e^{-x^2}}{\log \left (x^2\right ) \left (1+\log \left (x^2 \log \left (x^2\right )\right )\right )^2}\right ) \, dx\\ &=\log (5) \int \frac {e^{-x^2}}{1+\log \left (x^2 \log \left (x^2\right )\right )} \, dx-(2 \log (5)) \int \frac {e^{-x^2}}{\left (1+\log \left (x^2 \log \left (x^2\right )\right )\right )^2} \, dx-(2 \log (5)) \int \frac {e^{-x^2}}{\log \left (x^2\right ) \left (1+\log \left (x^2 \log \left (x^2\right )\right )\right )^2} \, dx-(2 \log (5)) \int \frac {e^{-x^2} x^2}{1+\log \left (x^2 \log \left (x^2\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 24, normalized size = 0.86 \begin {gather*} \frac {e^{-x^2} x \log (5)}{1+\log \left (x^2 \log \left (x^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 25, normalized size = 0.89 \begin {gather*} \frac {x \log \relax (5)}{e^{\left (x^{2}\right )} \log \left (x^{2} \log \left (x^{2}\right )\right ) + e^{\left (x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.66, size = 23, normalized size = 0.82 \begin {gather*} \frac {x e^{\left (-x^{2}\right )} \log \relax (5)}{\log \left (x^{2}\right ) + \log \left (\log \left (x^{2}\right )\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.41, size = 843, normalized size = 30.11
method | result | size |
risch | \(\frac {2 i x \ln \relax (5) {\mathrm e}^{-x^{2}}}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right )\right ) \mathrm {csgn}\left (i x^{2} \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right )\right )-\pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{2} \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right )\right )^{2}+\pi \,\mathrm {csgn}\left (i x^{2} \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right )\right ) \mathrm {csgn}\left (x^{2} \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right )\right )-\pi \mathrm {csgn}\left (x^{2} \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right )\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right )\right ) \mathrm {csgn}\left (i x^{2} \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right )\right )^{2}+\pi \mathrm {csgn}\left (i x^{2} \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right )\right )^{3}-\pi \,\mathrm {csgn}\left (i x^{2} \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right )\right ) \mathrm {csgn}\left (x^{2} \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right )\right )^{2}+\pi \mathrm {csgn}\left (x^{2} \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right )\right )^{3}+\pi +4 i \ln \relax (x )+2 i \ln \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right )-2 i \ln \relax (2)+2 i}\) | \(843\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 23, normalized size = 0.82 \begin {gather*} \frac {x e^{\left (-x^{2}\right )} \log \relax (5)}{\log \relax (2) + 2 \, \log \relax (x) + \log \left (\log \relax (x)\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.62, size = 62, normalized size = 2.21 \begin {gather*} \frac {x\,{\mathrm {e}}^{-x^2}\,\left (\ln \left (25\right )+2\,\ln \left (x^2\right )\,\ln \relax (5)-2\,x^2\,\ln \left (x^2\right )\,\ln \relax (5)+x^2\,\ln \left (x^2\right )\,\ln \left (25\right )\right )}{2\,\left (\ln \left (x^2\,\ln \left (x^2\right )\right )+1\right )\,\left (\ln \left (x^2\right )+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 20, normalized size = 0.71 \begin {gather*} \frac {x e^{- x^{2}} \log {\relax (5 )}}{\log {\left (x^{2} \log {\left (x^{2} \right )} \right )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________