Optimal. Leaf size=24 \[ e^2 \left (-4+e^{\left (1-\frac {x}{2-x}\right )^2}\right )+x \]
________________________________________________________________________________________
Rubi [F] time = 0.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8+e^{2+\frac {4-8 x+4 x^2}{4-4 x+x^2}} (8-8 x)+12 x-6 x^2+x^3}{-8+12 x-6 x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {8}{(-2+x)^3}+\frac {8 e^{\frac {2 \left (6-8 x+3 x^2\right )}{(-2+x)^2}} (-1+x)}{(2-x)^3}+\frac {12 x}{(-2+x)^3}-\frac {6 x^2}{(-2+x)^3}+\frac {x^3}{(-2+x)^3}\right ) \, dx\\ &=\frac {4}{(2-x)^2}-6 \int \frac {x^2}{(-2+x)^3} \, dx+8 \int \frac {e^{\frac {2 \left (6-8 x+3 x^2\right )}{(-2+x)^2}} (-1+x)}{(2-x)^3} \, dx+12 \int \frac {x}{(-2+x)^3} \, dx+\int \frac {x^3}{(-2+x)^3} \, dx\\ &=\frac {4}{(2-x)^2}-\frac {3 x^2}{(2-x)^2}-6 \int \left (\frac {4}{(-2+x)^3}+\frac {4}{(-2+x)^2}+\frac {1}{-2+x}\right ) \, dx+8 \int \left (-\frac {e^{\frac {2 \left (6-8 x+3 x^2\right )}{(-2+x)^2}}}{(-2+x)^3}-\frac {e^{\frac {2 \left (6-8 x+3 x^2\right )}{(-2+x)^2}}}{(-2+x)^2}\right ) \, dx+\int \left (1+\frac {8}{(-2+x)^3}+\frac {12}{(-2+x)^2}+\frac {6}{-2+x}\right ) \, dx\\ &=\frac {12}{(2-x)^2}-\frac {12}{2-x}+x-\frac {3 x^2}{(2-x)^2}-8 \int \frac {e^{\frac {2 \left (6-8 x+3 x^2\right )}{(-2+x)^2}}}{(-2+x)^3} \, dx-8 \int \frac {e^{\frac {2 \left (6-8 x+3 x^2\right )}{(-2+x)^2}}}{(-2+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 20, normalized size = 0.83 \begin {gather*} e^{6+\frac {4}{(-2+x)^2}+\frac {8}{-2+x}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 25, normalized size = 1.04 \begin {gather*} x + e^{\left (\frac {2 \, {\left (3 \, x^{2} - 8 \, x + 6\right )}}{x^{2} - 4 \, x + 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.34, size = 44, normalized size = 1.83 \begin {gather*} x + e^{\left (\frac {6 \, x^{2}}{x^{2} - 4 \, x + 4} - \frac {16 \, x}{x^{2} - 4 \, x + 4} + \frac {12}{x^{2} - 4 \, x + 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 0.88
method | result | size |
derivativedivides | \(x -2+{\mathrm e}^{\frac {4}{\left (x -2\right )^{2}}+\frac {8}{x -2}+6}\) | \(21\) |
default | \(x -2+{\mathrm e}^{\frac {4}{\left (x -2\right )^{2}}+\frac {8}{x -2}+6}\) | \(21\) |
risch | \({\mathrm e}^{\frac {6 x^{2}-16 x +12}{\left (x -2\right )^{2}}}+x\) | \(21\) |
norman | \(\frac {x^{3}-12 x +x^{2} {\mathrm e}^{2} {\mathrm e}^{\frac {4 x^{2}-8 x +4}{x^{2}-4 x +4}}+4 \,{\mathrm e}^{2} {\mathrm e}^{\frac {4 x^{2}-8 x +4}{x^{2}-4 x +4}}-4 x \,{\mathrm e}^{2} {\mathrm e}^{\frac {4 x^{2}-8 x +4}{x^{2}-4 x +4}}+16}{\left (x -2\right )^{2}}\) | \(102\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 85, normalized size = 3.54 \begin {gather*} x - \frac {4 \, {\left (3 \, x - 5\right )}}{x^{2} - 4 \, x + 4} + \frac {12 \, {\left (2 \, x - 3\right )}}{x^{2} - 4 \, x + 4} - \frac {12 \, {\left (x - 1\right )}}{x^{2} - 4 \, x + 4} + \frac {4}{x^{2} - 4 \, x + 4} + e^{\left (\frac {4}{x^{2} - 4 \, x + 4} + \frac {8}{x - 2} + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.17, size = 46, normalized size = 1.92 \begin {gather*} x+{\mathrm {e}}^{\frac {6\,x^2}{x^2-4\,x+4}}\,{\mathrm {e}}^{\frac {12}{x^2-4\,x+4}}\,{\mathrm {e}}^{-\frac {16\,x}{x^2-4\,x+4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 24, normalized size = 1.00 \begin {gather*} x + e^{2} e^{\frac {4 x^{2} - 8 x + 4}{x^{2} - 4 x + 4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________