Optimal. Leaf size=29 \[ e^{\frac {e^{e^x}-e^x-2 x}{x}-x+x \log (\log (x))} \]
________________________________________________________________________________________
Rubi [A] time = 2.50, antiderivative size = 30, normalized size of antiderivative = 1.03, number of steps used = 1, number of rules used = 1, integrand size = 86, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.012, Rules used = {6706} \begin {gather*} e^{\frac {-x^2-2 x+e^{e^x}-e^x}{x}} \log ^x(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{\frac {e^{e^x}-e^x-2 x-x^2}{x}} \log ^x(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 3.70, size = 29, normalized size = 1.00 \begin {gather*} e^{-2+\frac {e^{e^x}}{x}-\frac {e^x}{x}-x} \log ^x(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 28, normalized size = 0.97 \begin {gather*} e^{\left (\frac {x^{2} \log \left (\log \relax (x)\right ) - x^{2} - 2 \, x - e^{x} + e^{\left (e^{x}\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{2} \log \relax (x) \log \left (\log \relax (x)\right ) + {\left (x e^{x} - 1\right )} e^{\left (e^{x}\right )} \log \relax (x) + x^{2} - {\left (x^{2} + {\left (x - 1\right )} e^{x}\right )} \log \relax (x)\right )} e^{\left (\frac {x^{2} \log \left (\log \relax (x)\right ) - x^{2} - 2 \, x - e^{x} + e^{\left (e^{x}\right )}}{x}\right )}}{x^{2} \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 26, normalized size = 0.90
method | result | size |
risch | \(\ln \relax (x )^{x} {\mathrm e}^{-\frac {x^{2}+{\mathrm e}^{x}-{\mathrm e}^{{\mathrm e}^{x}}+2 x}{x}}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 25, normalized size = 0.86 \begin {gather*} e^{\left (x \log \left (\log \relax (x)\right ) - x - \frac {e^{x}}{x} + \frac {e^{\left (e^{x}\right )}}{x} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.41, size = 27, normalized size = 0.93 \begin {gather*} {\mathrm {e}}^{-x}\,{\mathrm {e}}^{-2}\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^x}{x}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{{\mathrm {e}}^x}}{x}}\,{\ln \relax (x)}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 10.64, size = 26, normalized size = 0.90 \begin {gather*} e^{\frac {x^{2} \log {\left (\log {\relax (x )} \right )} - x^{2} - 2 x - e^{x} + e^{e^{x}}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________