Optimal. Leaf size=32 \[ 3 x+\frac {x}{-\frac {3}{x}+\frac {\left (-1+e^x\right ) (5+x-\log (5))}{x}}+\log (x) \]
________________________________________________________________________________________
Rubi [F] time = 7.07, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {64+208 x+33 x^2+2 x^3+\left (-16-50 x-4 x^2\right ) \log (5)+(1+3 x) \log ^2(5)+e^x \left (-80-266 x-70 x^2-10 x^3-x^4+\left (26+82 x+10 x^2+x^3\right ) \log (5)+(-2-6 x) \log ^2(5)\right )+e^{2 x} \left (25+85 x+31 x^2+3 x^3+\left (-10-32 x-6 x^2\right ) \log (5)+(1+3 x) \log ^2(5)\right )}{64 x+16 x^2+x^3+\left (-16 x-2 x^2\right ) \log (5)+x \log ^2(5)+e^x \left (-80 x-26 x^2-2 x^3+\left (26 x+4 x^2\right ) \log (5)-2 x \log ^2(5)\right )+e^{2 x} \left (25 x+10 x^2+x^3+\left (-10 x-2 x^2\right ) \log (5)+x \log ^2(5)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {64+208 x+33 x^2+2 x^3+\left (-16-50 x-4 x^2\right ) \log (5)+(1+3 x) \log ^2(5)+e^x \left (-80-266 x-70 x^2-10 x^3-x^4+\left (26+82 x+10 x^2+x^3\right ) \log (5)+(-2-6 x) \log ^2(5)\right )+e^{2 x} \left (25+85 x+31 x^2+3 x^3+\left (-10-32 x-6 x^2\right ) \log (5)+(1+3 x) \log ^2(5)\right )}{16 x^2+x^3+\left (-16 x-2 x^2\right ) \log (5)+x \left (64+\log ^2(5)\right )+e^x \left (-80 x-26 x^2-2 x^3+\left (26 x+4 x^2\right ) \log (5)-2 x \log ^2(5)\right )+e^{2 x} \left (25 x+10 x^2+x^3+\left (-10 x-2 x^2\right ) \log (5)+x \log ^2(5)\right )} \, dx\\ &=\int \frac {2 x^3+x^2 (33-4 \log (5))+e^{2 x} (1+3 x) (5+x-\log (5))^2+(-8+\log (5))^2+x \left (208-50 \log (5)+3 \log ^2(5)\right )-e^x \left (x^4-x^3 (-10+\log (5))-10 x^2 (-7+\log (5))+2 \left (40-13 \log (5)+\log ^2(5)\right )+x \left (266-82 \log (5)+6 \log ^2(5)\right )\right )}{x \left (x-e^x (5+x-\log (5))+8 \left (1-\frac {\log (5)}{8}\right )\right )^2} \, dx\\ &=\int \left (\frac {1+3 x}{x}+\frac {x^2 \left (-43-x^2-x (13-2 \log (5))+13 \log (5)-\log ^2(5)\right )}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right )^2 (5+x-\log (5))}+\frac {x \left (-10+x^2+x (4-\log (5))+\log (25)\right )}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right ) (5+x-\log (5))}\right ) \, dx\\ &=\int \frac {1+3 x}{x} \, dx+\int \frac {x^2 \left (-43-x^2-x (13-2 \log (5))+13 \log (5)-\log ^2(5)\right )}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right )^2 (5+x-\log (5))} \, dx+\int \frac {x \left (-10+x^2+x (4-\log (5))+\log (25)\right )}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right ) (5+x-\log (5))} \, dx\\ &=\int \left (3+\frac {1}{x}\right ) \, dx+\int \left (\frac {x}{-x+e^x x+5 e^x \left (1-\frac {\log (5)}{5}\right )-8 \left (1-\frac {\log (5)}{8}\right )}+\frac {x^2}{x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )}+\frac {(5-\log (5))^2}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right ) (5+x-\log (5))}+\frac {5 \left (1-\frac {\log (5)}{5}\right )}{-x+e^x x+5 e^x \left (1-\frac {\log (5)}{5}\right )-8 \left (1-\frac {\log (5)}{8}\right )}\right ) \, dx+\int \frac {x^2 \left (-43-x^2+13 \log (5)-\log ^2(5)-x (13-\log (25))\right )}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right )^2 (5+x-\log (5))} \, dx\\ &=3 x+\log (x)+(5-\log (5)) \int \frac {1}{-x+e^x x+5 e^x \left (1-\frac {\log (5)}{5}\right )-8 \left (1-\frac {\log (5)}{8}\right )} \, dx+(5-\log (5))^2 \int \frac {1}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right ) (5+x-\log (5))} \, dx+\int \frac {x}{-x+e^x x+5 e^x \left (1-\frac {\log (5)}{5}\right )-8 \left (1-\frac {\log (5)}{8}\right )} \, dx+\int \frac {x^2}{x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )} \, dx+\int \left (-\frac {x^3}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right )^2}+\frac {x^2 (-8+\log (5))}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right )^2}+\frac {(5-\log (5)) \left (3+2 \log ^2(5)-\log (5) \log (25)\right )}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right )^2}+\frac {x \left (-3-2 \log ^2(5)+\log (5) \log (25)\right )}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right )^2}+\frac {(5-\log (5))^2 \left (-3-2 \log ^2(5)+\log (5) \log (25)\right )}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right )^2 (5+x-\log (5))}\right ) \, dx\\ &=3 x+\log (x)+(5-\log (5)) \int \frac {1}{-x+e^x x+5 e^x \left (1-\frac {\log (5)}{5}\right )-8 \left (1-\frac {\log (5)}{8}\right )} \, dx+(5-\log (5))^2 \int \frac {1}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right ) (5+x-\log (5))} \, dx+(-8+\log (5)) \int \frac {x^2}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right )^2} \, dx+\left ((5-\log (5)) \left (3+2 \log ^2(5)-\log (5) \log (25)\right )\right ) \int \frac {1}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right )^2} \, dx-\left ((5-\log (5))^2 \left (3+2 \log ^2(5)-\log (5) \log (25)\right )\right ) \int \frac {1}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right )^2 (5+x-\log (5))} \, dx+\left (-3-2 \log ^2(5)+\log (5) \log (25)\right ) \int \frac {x}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right )^2} \, dx+\int \frac {x}{-x+e^x x+5 e^x \left (1-\frac {\log (5)}{5}\right )-8 \left (1-\frac {\log (5)}{8}\right )} \, dx-\int \frac {x^3}{\left (x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )\right )^2} \, dx+\int \frac {x^2}{x-e^x x-5 e^x \left (1-\frac {\log (5)}{5}\right )+8 \left (1-\frac {\log (5)}{8}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 29, normalized size = 0.91 \begin {gather*} x \left (3+\frac {x}{-8-x+e^x (5+x-\log (5))+\log (5)}\right )+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.79, size = 72, normalized size = 2.25 \begin {gather*} -\frac {2 \, x^{2} - 3 \, {\left (x^{2} - x \log \relax (5) + 5 \, x\right )} e^{x} - 3 \, x \log \relax (5) - {\left ({\left (x - \log \relax (5) + 5\right )} e^{x} - x + \log \relax (5) - 8\right )} \log \relax (x) + 24 \, x}{{\left (x - \log \relax (5) + 5\right )} e^{x} - x + \log \relax (5) - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.87, size = 91, normalized size = 2.84 \begin {gather*} \frac {3 \, x^{2} e^{x} - 3 \, x e^{x} \log \relax (5) + x e^{x} \log \relax (x) - e^{x} \log \relax (5) \log \relax (x) - 2 \, x^{2} + 15 \, x e^{x} + 3 \, x \log \relax (5) - x \log \relax (x) + 5 \, e^{x} \log \relax (x) + \log \relax (5) \log \relax (x) - 24 \, x - 8 \, \log \relax (x)}{x e^{x} - e^{x} \log \relax (5) - x + 5 \, e^{x} + \log \relax (5) - 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.29, size = 35, normalized size = 1.09
method | result | size |
risch | \(3 x +\ln \relax (x )-\frac {x^{2}}{{\mathrm e}^{x} \ln \relax (5)-{\mathrm e}^{x} x -5 \,{\mathrm e}^{x}-\ln \relax (5)+x +8}\) | \(35\) |
norman | \(\frac {9 x +\left (3 \ln \relax (5)^{2}-30 \ln \relax (5)+75\right ) {\mathrm e}^{x}+2 x^{2}-3 \,{\mathrm e}^{x} x^{2}-3 \ln \relax (5)^{2}+39 \ln \relax (5)-120}{{\mathrm e}^{x} \ln \relax (5)-{\mathrm e}^{x} x -5 \,{\mathrm e}^{x}-\ln \relax (5)+x +8}+\ln \relax (x )\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.86, size = 52, normalized size = 1.62 \begin {gather*} -\frac {2 \, x^{2} - 3 \, x {\left (\log \relax (5) - 8\right )} - 3 \, {\left (x^{2} - x {\left (\log \relax (5) - 5\right )}\right )} e^{x}}{{\left (x - \log \relax (5) + 5\right )} e^{x} - x + \log \relax (5) - 8} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.62, size = 91, normalized size = 2.84 \begin {gather*} \frac {24\,x+8\,\ln \relax (x)-3\,x^2\,{\mathrm {e}}^x-5\,{\mathrm {e}}^x\,\ln \relax (x)-3\,x\,\ln \relax (5)-\ln \relax (5)\,\ln \relax (x)-15\,x\,{\mathrm {e}}^x+x\,\ln \relax (x)+2\,x^2+3\,x\,{\mathrm {e}}^x\,\ln \relax (5)+{\mathrm {e}}^x\,\ln \relax (5)\,\ln \relax (x)-x\,{\mathrm {e}}^x\,\ln \relax (x)}{x-\ln \relax (5)-5\,{\mathrm {e}}^x+{\mathrm {e}}^x\,\ln \relax (5)-x\,{\mathrm {e}}^x+8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 26, normalized size = 0.81 \begin {gather*} \frac {x^{2}}{- x + \left (x - \log {\relax (5 )} + 5\right ) e^{x} - 8 + \log {\relax (5 )}} + 3 x + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________