Optimal. Leaf size=26 \[ \frac {16 \left (e^{\frac {2 e^{-2+x} (-4+x)}{x}}+x^2\right )^2}{x^2} \]
________________________________________________________________________________________
Rubi [F] time = 2.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-2+x} \left (32 e^{2-x} x^5+e^{\frac {2 e^{-2+x} (-8+2 x)}{x}} \left (256-256 x-32 e^{2-x} x+64 x^2\right )+e^{\frac {e^{-2+x} (-8+2 x)}{x}} \left (256 x^2-256 x^3+64 x^4\right )\right )}{x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {64 e^{-2+\frac {2 e^{-2+x} (-4+x)}{x}+x} (-2+x)^2}{x^2}+32 x+\frac {32 e^{-2+\frac {4 e^{-2+x} (-4+x)}{x}} \left (8 e^x-e^2 x-8 e^x x+2 e^x x^2\right )}{x^4}\right ) \, dx\\ &=16 x^2+32 \int \frac {e^{-2+\frac {4 e^{-2+x} (-4+x)}{x}} \left (8 e^x-e^2 x-8 e^x x+2 e^x x^2\right )}{x^4} \, dx+64 \int \frac {e^{-2+\frac {2 e^{-2+x} (-4+x)}{x}+x} (-2+x)^2}{x^2} \, dx\\ &=16 x^2+\frac {16 e^{-2-\frac {4 e^{-2+x} (4-x)}{x}} \left (4 e^x-4 e^x x+e^x x^2\right )}{\left (\frac {e^{-2+x} (4-x)}{x^2}+\frac {e^{-2+x}}{x}-\frac {e^{-2+x} (4-x)}{x}\right ) x^4}+64 \int \left (e^{-2+\frac {2 e^{-2+x} (-4+x)}{x}+x}+\frac {4 e^{-2+\frac {2 e^{-2+x} (-4+x)}{x}+x}}{x^2}-\frac {4 e^{-2+\frac {2 e^{-2+x} (-4+x)}{x}+x}}{x}\right ) \, dx\\ &=16 x^2+\frac {16 e^{-2-\frac {4 e^{-2+x} (4-x)}{x}} \left (4 e^x-4 e^x x+e^x x^2\right )}{\left (\frac {e^{-2+x} (4-x)}{x^2}+\frac {e^{-2+x}}{x}-\frac {e^{-2+x} (4-x)}{x}\right ) x^4}+64 \int e^{-2+\frac {2 e^{-2+x} (-4+x)}{x}+x} \, dx+256 \int \frac {e^{-2+\frac {2 e^{-2+x} (-4+x)}{x}+x}}{x^2} \, dx-256 \int \frac {e^{-2+\frac {2 e^{-2+x} (-4+x)}{x}+x}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 26, normalized size = 1.00 \begin {gather*} \frac {16 \left (e^{\frac {2 e^{-2+x} (-4+x)}{x}}+x^2\right )^2}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 44, normalized size = 1.69 \begin {gather*} \frac {16 \, {\left (x^{4} + 2 \, x^{2} e^{\left (\frac {2 \, {\left (x - 4\right )} e^{\left (x + \log \relax (x) - 2\right )}}{x^{2}}\right )} + e^{\left (\frac {4 \, {\left (x - 4\right )} e^{\left (x + \log \relax (x) - 2\right )}}{x^{2}}\right )}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {32 \, {\left (x^{6} e^{\left (-x - \log \relax (x) + 2\right )} - {\left (x^{2} e^{\left (-x - \log \relax (x) + 2\right )} - 2 \, x^{2} + 8 \, x - 8\right )} e^{\left (\frac {4 \, {\left (x - 4\right )} e^{\left (x + \log \relax (x) - 2\right )}}{x^{2}}\right )} + 2 \, {\left (x^{4} - 4 \, x^{3} + 4 \, x^{2}\right )} e^{\left (\frac {2 \, {\left (x - 4\right )} e^{\left (x + \log \relax (x) - 2\right )}}{x^{2}}\right )}\right )} e^{\left (x + \log \relax (x) - 2\right )}}{x^{5}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 40, normalized size = 1.54
method | result | size |
risch | \(16 x^{2}+\frac {16 \,{\mathrm e}^{\frac {4 \left (x -4\right ) {\mathrm e}^{x -2}}{x}}}{x^{2}}+32 \,{\mathrm e}^{\frac {2 \left (x -4\right ) {\mathrm e}^{x -2}}{x}}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.69, size = 51, normalized size = 1.96 \begin {gather*} 16 \, x^{2} + \frac {16 \, {\left (2 \, x^{2} e^{\left (-\frac {8 \, e^{\left (x - 2\right )}}{x} + 2 \, e^{\left (x - 2\right )}\right )} + e^{\left (-\frac {16 \, e^{\left (x - 2\right )}}{x} + 4 \, e^{\left (x - 2\right )}\right )}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.26, size = 47, normalized size = 1.81 \begin {gather*} 32\,{\mathrm {e}}^{2\,{\mathrm {e}}^{-2}\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-\frac {8\,{\mathrm {e}}^{-2}\,{\mathrm {e}}^x}{x}}+16\,x^2+\frac {16\,{\mathrm {e}}^{4\,{\mathrm {e}}^{-2}\,{\mathrm {e}}^x}\,{\mathrm {e}}^{-\frac {16\,{\mathrm {e}}^{-2}\,{\mathrm {e}}^x}{x}}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 42, normalized size = 1.62 \begin {gather*} 16 x^{2} + \frac {32 x^{2} e^{\frac {\left (2 x - 8\right ) e^{x - 2}}{x}} + 16 e^{\frac {2 \left (2 x - 8\right ) e^{x - 2}}{x}}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________