Optimal. Leaf size=23 \[ e^{\frac {1}{x+\log \left (\frac {3}{\log \left (\frac {2}{x}\right )}\right )}}+\log \left (\log ^2(x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 2.50, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 147, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.034, Rules used = {6688, 6742, 2302, 29, 6706} \begin {gather*} 2 \log (\log (x))+e^{\frac {1}{x+\log \left (\frac {3}{\log \left (\frac {2}{x}\right )}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 2302
Rule 6688
Rule 6706
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^{\frac {1}{x+\log \left (\frac {3}{\log \left (\frac {2}{x}\right )}\right )}} \log (x)+\log \left (\frac {2}{x}\right ) \left (-e^{\frac {1}{x+\log \left (\frac {3}{\log \left (\frac {2}{x}\right )}\right )}} x \log (x)+2 \left (x+\log \left (\frac {3}{\log \left (\frac {2}{x}\right )}\right )\right )^2\right )}{x \log \left (\frac {2}{x}\right ) \log (x) \left (x+\log \left (\frac {3}{\log \left (\frac {2}{x}\right )}\right )\right )^2} \, dx\\ &=\int \left (\frac {2}{x \log (x)}-\frac {e^{\frac {1}{x+\log \left (\frac {3}{\log \left (\frac {2}{x}\right )}\right )}} \left (1+x \log \left (\frac {2}{x}\right )\right )}{x \log \left (\frac {2}{x}\right ) \left (x+\log \left (\frac {3}{\log \left (\frac {2}{x}\right )}\right )\right )^2}\right ) \, dx\\ &=2 \int \frac {1}{x \log (x)} \, dx-\int \frac {e^{\frac {1}{x+\log \left (\frac {3}{\log \left (\frac {2}{x}\right )}\right )}} \left (1+x \log \left (\frac {2}{x}\right )\right )}{x \log \left (\frac {2}{x}\right ) \left (x+\log \left (\frac {3}{\log \left (\frac {2}{x}\right )}\right )\right )^2} \, dx\\ &=e^{\frac {1}{x+\log \left (\frac {3}{\log \left (\frac {2}{x}\right )}\right )}}+2 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )\\ &=e^{\frac {1}{x+\log \left (\frac {3}{\log \left (\frac {2}{x}\right )}\right )}}+2 \log (\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 23, normalized size = 1.00 \begin {gather*} e^{\frac {1}{x+\log \left (\frac {3}{\log \left (\frac {2}{x}\right )}\right )}}+2 \log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 31, normalized size = 1.35 \begin {gather*} e^{\left (\frac {1}{x + \log \left (\frac {3}{\log \left (\frac {2}{x}\right )}\right )}\right )} + 2 \, \log \left (-\log \relax (2) + \log \left (\frac {2}{x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.43, size = 23, normalized size = 1.00 \begin {gather*} e^{\left (\frac {1}{x + \log \relax (3) - \log \left (\log \relax (2) - \log \relax (x)\right )}\right )} + 2 \, \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 1.40, size = 150, normalized size = 6.52
method | result | size |
risch | \(2 \ln \left (\ln \relax (x )\right )+{\mathrm e}^{\frac {2}{i \pi \mathrm {csgn}\left (\frac {1}{2 i \ln \relax (2)-2 i \ln \relax (x )}\right )^{3}+i \pi \mathrm {csgn}\left (\frac {1}{2 i \ln \relax (2)-2 i \ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{2 i \ln \relax (2)-2 i \ln \relax (x )}\right )-i \pi \mathrm {csgn}\left (\frac {1}{2 i \ln \relax (2)-2 i \ln \relax (x )}\right )^{2}-i \pi \,\mathrm {csgn}\left (\frac {1}{2 i \ln \relax (2)-2 i \ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i}{2 i \ln \relax (2)-2 i \ln \relax (x )}\right )+i \pi -2 \ln \left (2 i \ln \relax (2)-2 i \ln \relax (x )\right )+2 \ln \relax (6)+2 x}}\) | \(150\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\int \frac {{\left (x \log \relax (2) - x \log \relax (x) + 1\right )} e^{\left (\frac {1}{x + \log \relax (3) - \log \left (\log \relax (2) - \log \relax (x)\right )}\right )}}{x^{3} \log \relax (2) + 2 \, x^{2} \log \relax (3) \log \relax (2) + x \log \relax (3)^{2} \log \relax (2) + {\left (x \log \relax (2) - x \log \relax (x)\right )} \log \left (\log \relax (2) - \log \relax (x)\right )^{2} - {\left (x^{3} + 2 \, x^{2} \log \relax (3) + x \log \relax (3)^{2}\right )} \log \relax (x) - 2 \, {\left (x^{2} \log \relax (2) + x \log \relax (3) \log \relax (2) - {\left (x^{2} + x \log \relax (3)\right )} \log \relax (x)\right )} \log \left (\log \relax (2) - \log \relax (x)\right )}\,{d x} + 2 \, \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.55, size = 22, normalized size = 0.96 \begin {gather*} 2\,\ln \left (\ln \relax (x)\right )+{\mathrm {e}}^{\frac {1}{x+\ln \left (\frac {3}{\ln \left (\frac {2}{x}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.91, size = 20, normalized size = 0.87 \begin {gather*} e^{\frac {1}{x + \log {\left (\frac {3}{- \log {\relax (x )} + \log {\relax (2 )}} \right )}}} + 2 \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________