Optimal. Leaf size=29 \[ x+\frac {1}{4} \left (x+\log \left (\frac {1}{4} e^{-\frac {2 x}{e}} x^2+\log (5)\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 5.93, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {2 (-x+e \log (x))}{e}} \left (-2 x^2+e \left (4 x+x^2\right )\right )+e \left (8 x+4 x^2\right ) \log (5)+\left (e^{\frac {2 (-x+e \log (x))}{e}} (-2 x+e (2+x))+4 e x \log (5)\right ) \log \left (\frac {1}{4} \left (e^{\frac {2 (-x+e \log (x))}{e}}+4 \log (5)\right )\right )}{2 e^{1+\frac {2 (-x+e \log (x))}{e}} x+8 e x \log (5)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-1+\frac {2 x}{e}} \left (e^{\frac {2 (-x+e \log (x))}{e}} \left (-2 x^2+e \left (4 x+x^2\right )\right )+e \left (8 x+4 x^2\right ) \log (5)+\left (e^{\frac {2 (-x+e \log (x))}{e}} (-2 x+e (2+x))+4 e x \log (5)\right ) \log \left (\frac {1}{4} \left (e^{\frac {2 (-x+e \log (x))}{e}}+4 \log (5)\right )\right )\right )}{2 x \left (x^2+e^{\frac {2 x}{e}} \log (625)\right )} \, dx\\ &=\frac {1}{2} \int \frac {e^{-1+\frac {2 x}{e}} \left (e^{\frac {2 (-x+e \log (x))}{e}} \left (-2 x^2+e \left (4 x+x^2\right )\right )+e \left (8 x+4 x^2\right ) \log (5)+\left (e^{\frac {2 (-x+e \log (x))}{e}} (-2 x+e (2+x))+4 e x \log (5)\right ) \log \left (\frac {1}{4} \left (e^{\frac {2 (-x+e \log (x))}{e}}+4 \log (5)\right )\right )\right )}{x \left (x^2+e^{\frac {2 x}{e}} \log (625)\right )} \, dx\\ &=\frac {1}{2} \int \frac {-2 x^3+e x^2 (4+x)+4 e^{1+\frac {2 x}{e}} (2+x) \log (5)+\left (-2 x^2+e x (2+x)+4 e^{1+\frac {2 x}{e}} \log (5)\right ) \log \left (\frac {1}{4} e^{-\frac {2 x}{e}} x^2+\log (5)\right )}{e \left (x^2+e^{\frac {2 x}{e}} \log (625)\right )} \, dx\\ &=\frac {\int \frac {-2 x^3+e x^2 (4+x)+4 e^{1+\frac {2 x}{e}} (2+x) \log (5)+\left (-2 x^2+e x (2+x)+4 e^{1+\frac {2 x}{e}} \log (5)\right ) \log \left (\frac {1}{4} e^{-\frac {2 x}{e}} x^2+\log (5)\right )}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e}\\ &=\frac {\int \left (\frac {4 e \log (5) \left (2+x+\log \left (\frac {1}{4} e^{-\frac {2 x}{e}} x^2+\log (5)\right )\right )}{\log (625)}+\frac {(e-x) x \log (390625) \left (x-\log (4)+\log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )\right )}{\log (625) \left (x^2+e^{\frac {2 x}{e}} \log (625)\right )}\right ) \, dx}{2 e}\\ &=\frac {(2 \log (5)) \int \left (2+x+\log \left (\frac {1}{4} e^{-\frac {2 x}{e}} x^2+\log (5)\right )\right ) \, dx}{\log (625)}+\frac {\log (390625) \int \frac {(e-x) x \left (x-\log (4)+\log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )\right )}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e \log (625)}\\ &=\frac {4 x \log (5)}{\log (625)}+\frac {x^2 \log (5)}{\log (625)}+\frac {(2 \log (5)) \int \log \left (\frac {1}{4} e^{-\frac {2 x}{e}} x^2+\log (5)\right ) \, dx}{\log (625)}+\frac {\log (390625) \int \left (\frac {e x \left (x-\log (4)+\log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )\right )}{x^2+e^{\frac {2 x}{e}} \log (625)}-\frac {x^2 \left (x-\log (4)+\log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )\right )}{x^2+e^{\frac {2 x}{e}} \log (625)}\right ) \, dx}{2 e \log (625)}\\ &=\frac {4 x \log (5)}{\log (625)}+\frac {x^2 \log (5)}{\log (625)}+\frac {2 x \log (5) \log \left (\frac {1}{4} e^{-\frac {2 x}{e}} x^2+\log (5)\right )}{\log (625)}-\frac {(2 \log (5)) \int \frac {2 (e-x) x^2}{e \left (x^2+4 e^{\frac {2 x}{e}} \log (5)\right )} \, dx}{\log (625)}+\frac {\log (390625) \int \frac {x \left (x-\log (4)+\log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )\right )}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 \log (625)}-\frac {\log (390625) \int \frac {x^2 \left (x-\log (4)+\log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )\right )}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e \log (625)}\\ &=\frac {4 x \log (5)}{\log (625)}+\frac {x^2 \log (5)}{\log (625)}+\frac {2 x \log (5) \log \left (\frac {1}{4} e^{-\frac {2 x}{e}} x^2+\log (5)\right )}{\log (625)}-\frac {(4 \log (5)) \int \frac {(e-x) x^2}{x^2+4 e^{\frac {2 x}{e}} \log (5)} \, dx}{e \log (625)}+\frac {\log (390625) \int \left (\frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)}-\frac {x \log (4)}{x^2+e^{\frac {2 x}{e}} \log (625)}+\frac {x \log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )}{x^2+e^{\frac {2 x}{e}} \log (625)}\right ) \, dx}{2 \log (625)}-\frac {\log (390625) \int \left (\frac {x^3}{x^2+e^{\frac {2 x}{e}} \log (625)}-\frac {x^2 \log (4)}{x^2+e^{\frac {2 x}{e}} \log (625)}+\frac {x^2 \log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )}{x^2+e^{\frac {2 x}{e}} \log (625)}\right ) \, dx}{2 e \log (625)}\\ &=\frac {4 x \log (5)}{\log (625)}+\frac {x^2 \log (5)}{\log (625)}+\frac {2 x \log (5) \log \left (\frac {1}{4} e^{-\frac {2 x}{e}} x^2+\log (5)\right )}{\log (625)}-\frac {(4 \log (5)) \int \left (\frac {e x^2}{x^2+4 e^{\frac {2 x}{e}} \log (5)}-\frac {x^3}{x^2+4 e^{\frac {2 x}{e}} \log (5)}\right ) \, dx}{e \log (625)}+\frac {\log (390625) \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 \log (625)}+\frac {\log (390625) \int \frac {x \log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 \log (625)}-\frac {\log (390625) \int \frac {x^3}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e \log (625)}-\frac {\log (390625) \int \frac {x^2 \log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e \log (625)}-\frac {(\log (4) \log (390625)) \int \frac {x}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 \log (625)}+\frac {(\log (4) \log (390625)) \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e \log (625)}\\ &=\frac {4 x \log (5)}{\log (625)}+\frac {x^2 \log (5)}{\log (625)}+\frac {2 x \log (5) \log \left (\frac {1}{4} e^{-\frac {2 x}{e}} x^2+\log (5)\right )}{\log (625)}-\frac {(4 \log (5)) \int \frac {x^2}{x^2+4 e^{\frac {2 x}{e}} \log (5)} \, dx}{\log (625)}+\frac {(4 \log (5)) \int \frac {x^3}{x^2+4 e^{\frac {2 x}{e}} \log (5)} \, dx}{e \log (625)}+\frac {\log (390625) \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 \log (625)}-\frac {\log (390625) \int \frac {2 (e-x) x \int \frac {x}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{e \left (x^2+e^{\frac {2 x}{e}} \log (625)\right )} \, dx}{2 \log (625)}-\frac {\log (390625) \int \frac {x^3}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e \log (625)}+\frac {\log (390625) \int \frac {2 (e-x) x \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{e \left (x^2+e^{\frac {2 x}{e}} \log (625)\right )} \, dx}{2 e \log (625)}-\frac {(\log (4) \log (390625)) \int \frac {x}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 \log (625)}+\frac {(\log (4) \log (390625)) \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e \log (625)}+\frac {\left (\log (390625) \log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )\right ) \int \frac {x}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 \log (625)}-\frac {\left (\log (390625) \log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )\right ) \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e \log (625)}\\ &=\frac {4 x \log (5)}{\log (625)}+\frac {x^2 \log (5)}{\log (625)}+\frac {2 x \log (5) \log \left (\frac {1}{4} e^{-\frac {2 x}{e}} x^2+\log (5)\right )}{\log (625)}-\frac {(4 \log (5)) \int \frac {x^2}{x^2+4 e^{\frac {2 x}{e}} \log (5)} \, dx}{\log (625)}+\frac {(4 \log (5)) \int \frac {x^3}{x^2+4 e^{\frac {2 x}{e}} \log (5)} \, dx}{e \log (625)}+\frac {\log (390625) \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 \log (625)}+\frac {\log (390625) \int \frac {(e-x) x \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{e^2 \log (625)}-\frac {\log (390625) \int \frac {x^3}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e \log (625)}-\frac {\log (390625) \int \frac {(e-x) x \int \frac {x}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{e \log (625)}-\frac {(\log (4) \log (390625)) \int \frac {x}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 \log (625)}+\frac {(\log (4) \log (390625)) \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e \log (625)}+\frac {\left (\log (390625) \log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )\right ) \int \frac {x}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 \log (625)}-\frac {\left (\log (390625) \log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )\right ) \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e \log (625)}\\ &=\frac {4 x \log (5)}{\log (625)}+\frac {x^2 \log (5)}{\log (625)}+\frac {2 x \log (5) \log \left (\frac {1}{4} e^{-\frac {2 x}{e}} x^2+\log (5)\right )}{\log (625)}-\frac {(4 \log (5)) \int \frac {x^2}{x^2+4 e^{\frac {2 x}{e}} \log (5)} \, dx}{\log (625)}+\frac {(4 \log (5)) \int \frac {x^3}{x^2+4 e^{\frac {2 x}{e}} \log (5)} \, dx}{e \log (625)}+\frac {\log (390625) \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 \log (625)}+\frac {\log (390625) \int \left (\frac {e x \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{x^2+e^{\frac {2 x}{e}} \log (625)}-\frac {x^2 \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{x^2+e^{\frac {2 x}{e}} \log (625)}\right ) \, dx}{e^2 \log (625)}-\frac {\log (390625) \int \frac {x^3}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e \log (625)}-\frac {\log (390625) \int \left (\frac {e x \int \frac {x}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{x^2+e^{\frac {2 x}{e}} \log (625)}-\frac {x^2 \int \frac {x}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{x^2+e^{\frac {2 x}{e}} \log (625)}\right ) \, dx}{e \log (625)}-\frac {(\log (4) \log (390625)) \int \frac {x}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 \log (625)}+\frac {(\log (4) \log (390625)) \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e \log (625)}+\frac {\left (\log (390625) \log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )\right ) \int \frac {x}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 \log (625)}-\frac {\left (\log (390625) \log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )\right ) \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e \log (625)}\\ &=\frac {4 x \log (5)}{\log (625)}+\frac {x^2 \log (5)}{\log (625)}+\frac {2 x \log (5) \log \left (\frac {1}{4} e^{-\frac {2 x}{e}} x^2+\log (5)\right )}{\log (625)}-\frac {(4 \log (5)) \int \frac {x^2}{x^2+4 e^{\frac {2 x}{e}} \log (5)} \, dx}{\log (625)}+\frac {(4 \log (5)) \int \frac {x^3}{x^2+4 e^{\frac {2 x}{e}} \log (5)} \, dx}{e \log (625)}+\frac {\log (390625) \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 \log (625)}-\frac {\log (390625) \int \frac {x \int \frac {x}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{\log (625)}-\frac {\log (390625) \int \frac {x^2 \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{e^2 \log (625)}-\frac {\log (390625) \int \frac {x^3}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e \log (625)}+\frac {\log (390625) \int \frac {x^2 \int \frac {x}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{e \log (625)}+\frac {\log (390625) \int \frac {x \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{e \log (625)}-\frac {(\log (4) \log (390625)) \int \frac {x}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 \log (625)}+\frac {(\log (4) \log (390625)) \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e \log (625)}+\frac {\left (\log (390625) \log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )\right ) \int \frac {x}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 \log (625)}-\frac {\left (\log (390625) \log \left (e^{-\frac {2 x}{e}} x^2+\log (625)\right )\right ) \int \frac {x^2}{x^2+e^{\frac {2 x}{e}} \log (625)} \, dx}{2 e \log (625)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.18, size = 114, normalized size = 3.93 \begin {gather*} \frac {-\frac {2 x^2}{e}+\frac {1}{2} e x (4+x)+2 x \log \left (x^2+4 e^{\frac {2 x}{e}} \log (5)\right )-\frac {1}{2} e \log ^2\left (x^2+4 e^{\frac {2 x}{e}} \log (5)\right )+\log \left (\frac {1}{4} e^{-\frac {2 x}{e}} x^2+\log (5)\right ) \left ((-2+e) x+e \log \left (x^2+4 e^{\frac {2 x}{e}} \log (5)\right )\right )}{2 e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.93, size = 70, normalized size = 2.41 \begin {gather*} \frac {1}{4} \, x^{2} + \frac {1}{2} \, x \log \left (\frac {1}{4} \, {\left (4 \, e \log \relax (5) + e^{\left ({\left (2 \, e \log \relax (x) - 2 \, x + e\right )} e^{\left (-1\right )}\right )}\right )} e^{\left (-1\right )}\right ) + \frac {1}{4} \, \log \left (\frac {1}{4} \, {\left (4 \, e \log \relax (5) + e^{\left ({\left (2 \, e \log \relax (x) - 2 \, x + e\right )} e^{\left (-1\right )}\right )}\right )} e^{\left (-1\right )}\right )^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, {\left (x^{2} + 2 \, x\right )} e \log \relax (5) - {\left (2 \, x^{2} - {\left (x^{2} + 4 \, x\right )} e\right )} e^{\left (2 \, {\left (e \log \relax (x) - x\right )} e^{\left (-1\right )}\right )} + {\left (4 \, x e \log \relax (5) + {\left ({\left (x + 2\right )} e - 2 \, x\right )} e^{\left (2 \, {\left (e \log \relax (x) - x\right )} e^{\left (-1\right )}\right )}\right )} \log \left (\frac {1}{4} \, e^{\left (2 \, {\left (e \log \relax (x) - x\right )} e^{\left (-1\right )}\right )} + \log \relax (5)\right )}{2 \, {\left (4 \, x e \log \relax (5) + x e^{\left (2 \, {\left (e \log \relax (x) - x\right )} e^{\left (-1\right )} + 1\right )}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 45, normalized size = 1.55
method | result | size |
risch | \(\frac {\ln \left (\frac {x^{2} {\mathrm e}^{-2 \,{\mathrm e}^{-1} x}}{4}+\ln \relax (5)\right )^{2}}{4}+\frac {x \ln \left (\frac {x^{2} {\mathrm e}^{-2 \,{\mathrm e}^{-1} x}}{4}+\ln \relax (5)\right )}{2}+\frac {x^{2}}{4}+x\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.66, size = 87, normalized size = 3.00 \begin {gather*} \frac {1}{4} \, {\left (x^{2} {\left (e^{2} - 4 \, e + 4\right )} + e^{2} \log \left (x^{2} + 4 \, e^{\left (2 \, x e^{\left (-1\right )}\right )} \log \relax (5)\right )^{2} - 4 \, {\left ({\left (\log \relax (2) - 1\right )} e^{2} - 2 \, e \log \relax (2)\right )} x + 2 \, {\left (x {\left (e^{2} - 2 \, e\right )} - 2 \, e^{2} \log \relax (2)\right )} \log \left (x^{2} + 4 \, e^{\left (2 \, x e^{\left (-1\right )}\right )} \log \relax (5)\right )\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^{-2\,{\mathrm {e}}^{-1}\,\left (x-\mathrm {e}\,\ln \relax (x)\right )}\,\left (\mathrm {e}\,\left (x^2+4\,x\right )-2\,x^2\right )-\ln \left (\ln \relax (5)+\frac {{\mathrm {e}}^{-2\,{\mathrm {e}}^{-1}\,\left (x-\mathrm {e}\,\ln \relax (x)\right )}}{4}\right )\,\left ({\mathrm {e}}^{-2\,{\mathrm {e}}^{-1}\,\left (x-\mathrm {e}\,\ln \relax (x)\right )}\,\left (2\,x-\mathrm {e}\,\left (x+2\right )\right )-4\,x\,\mathrm {e}\,\ln \relax (5)\right )+\mathrm {e}\,\ln \relax (5)\,\left (4\,x^2+8\,x\right )}{8\,x\,\mathrm {e}\,\ln \relax (5)+2\,x\,\mathrm {e}\,{\mathrm {e}}^{-2\,{\mathrm {e}}^{-1}\,\left (x-\mathrm {e}\,\ln \relax (x)\right )}} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.66, size = 60, normalized size = 2.07 \begin {gather*} \frac {x^{2}}{4} + \frac {x \log {\left (\frac {e^{\frac {2 \left (- x + e \log {\relax (x )}\right )}{e}}}{4} + \log {\relax (5 )} \right )}}{2} + x + \frac {\log {\left (\frac {e^{\frac {2 \left (- x + e \log {\relax (x )}\right )}{e}}}{4} + \log {\relax (5 )} \right )}^{2}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________