Optimal. Leaf size=24 \[ \frac {\left (4+e^3\right )^2}{1-e^{5/2}-x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {6, 12, 1989, 28, 261} \begin {gather*} \frac {\left (4+e^3\right )^2}{-x^2-e^{5/2}+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 28
Rule 261
Rule 1989
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^6 x+\left (32+16 e^3\right ) x}{1+e^5-2 x^2+x^4+e^{5/2} \left (-2+2 x^2\right )} \, dx\\ &=\int \frac {\left (32+16 e^3+2 e^6\right ) x}{1+e^5-2 x^2+x^4+e^{5/2} \left (-2+2 x^2\right )} \, dx\\ &=\left (2 \left (4+e^3\right )^2\right ) \int \frac {x}{1+e^5-2 x^2+x^4+e^{5/2} \left (-2+2 x^2\right )} \, dx\\ &=\left (2 \left (4+e^3\right )^2\right ) \int \frac {x}{\left (-1+e^{5/2}\right )^2-2 \left (1-e^{5/2}\right ) x^2+x^4} \, dx\\ &=\left (2 \left (4+e^3\right )^2\right ) \int \frac {x}{\left (-1+e^{5/2}+x^2\right )^2} \, dx\\ &=\frac {\left (4+e^3\right )^2}{1-e^{5/2}-x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 21, normalized size = 0.88 \begin {gather*} -\frac {\left (4+e^3\right )^2}{-1+e^{5/2}+x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 19, normalized size = 0.79 \begin {gather*} -\frac {e^{6} + 8 \, e^{3} + 16}{x^{2} + e^{\frac {5}{2}} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 24, normalized size = 1.00
method | result | size |
gosper | \(-\frac {{\mathrm e}^{6}+8 \,{\mathrm e}^{3}+16}{{\mathrm e}^{\frac {5}{2}}+x^{2}-1}\) | \(24\) |
norman | \(\frac {-{\mathrm e}^{6}-8 \,{\mathrm e}^{3}-16}{{\mathrm e}^{\frac {5}{2}}+x^{2}-1}\) | \(25\) |
risch | \(-\frac {{\mathrm e}^{6}}{{\mathrm e}^{\frac {5}{2}}+x^{2}-1}-\frac {8 \,{\mathrm e}^{3}}{{\mathrm e}^{\frac {5}{2}}+x^{2}-1}-\frac {16}{{\mathrm e}^{\frac {5}{2}}+x^{2}-1}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, \int \frac {x e^{6} + 8 \, x e^{3} + 16 \, x}{x^{4} - 2 \, x^{2} + 2 \, {\left (x^{2} - 1\right )} e^{\frac {5}{2}} + e^{5} + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.16, size = 17, normalized size = 0.71 \begin {gather*} -\frac {{\left ({\mathrm {e}}^3+4\right )}^2}{x^2+{\mathrm {e}}^{5/2}-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.25, size = 42, normalized size = 1.75 \begin {gather*} \frac {\left (1 - e^{\frac {5}{2}}\right ) \left (32 + 16 e^{3} + 2 e^{6}\right )}{x^{2} \left (-2 + 2 e^{\frac {5}{2}}\right ) - 4 e^{\frac {5}{2}} + 2 + 2 e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________