Optimal. Leaf size=20 \[ -x+x \left (x-\frac {2}{e+\frac {4}{\log (4)}}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.03, antiderivative size = 53, normalized size of antiderivative = 2.65, number of steps used = 2, number of rules used = 1, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {12} \begin {gather*} \frac {4 x^2}{4+e \log (4)}+\frac {(e (1-2 x)+2)^2 \log (4)}{4 e (4+e \log (4))}-\frac {4 x}{4+e \log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int (-4+8 x+(-2+e (-1+2 x)) \log (4)) \, dx}{4+e \log (4)}\\ &=-\frac {4 x}{4+e \log (4)}+\frac {4 x^2}{4+e \log (4)}+\frac {(2+e (1-2 x))^2 \log (4)}{4 e (4+e \log (4))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 34, normalized size = 1.70 \begin {gather*} \frac {-4 x+4 x^2+(-2-e) x \log (4)+e x^2 \log (4)}{4+e \log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 36, normalized size = 1.80 \begin {gather*} \frac {2 \, x^{2} + {\left ({\left (x^{2} - x\right )} e - 2 \, x\right )} \log \relax (2) - 2 \, x}{e \log \relax (2) + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 36, normalized size = 1.80 \begin {gather*} \frac {2 \, x^{2} + {\left ({\left (x^{2} - x\right )} e - 2 \, x\right )} \log \relax (2) - 2 \, x}{e \log \relax (2) + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 28, normalized size = 1.40
method | result | size |
norman | \(x^{2}-\frac {\left ({\mathrm e} \ln \relax (2)+2 \ln \relax (2)+2\right ) x}{{\mathrm e} \ln \relax (2)+2}\) | \(28\) |
gosper | \(\frac {x \left (x \,{\mathrm e} \ln \relax (2)-{\mathrm e} \ln \relax (2)-2 \ln \relax (2)+2 x -2\right )}{{\mathrm e} \ln \relax (2)+2}\) | \(33\) |
default | \(\frac {2 \ln \relax (2) \left ({\mathrm e} \left (x^{2}-x \right )-2 x \right )+4 x^{2}-4 x}{2 \,{\mathrm e} \ln \relax (2)+4}\) | \(39\) |
risch | \(\frac {2 \ln \relax (2) {\mathrm e} x^{2}}{2 \,{\mathrm e} \ln \relax (2)+4}-\frac {2 x \,{\mathrm e} \ln \relax (2)}{2 \,{\mathrm e} \ln \relax (2)+4}-\frac {4 x \ln \relax (2)}{2 \,{\mathrm e} \ln \relax (2)+4}+\frac {4 x^{2}}{2 \,{\mathrm e} \ln \relax (2)+4}-\frac {4 x}{2 \,{\mathrm e} \ln \relax (2)+4}\) | \(81\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 36, normalized size = 1.80 \begin {gather*} \frac {2 \, x^{2} + {\left ({\left (x^{2} - x\right )} e - 2 \, x\right )} \log \relax (2) - 2 \, x}{e \log \relax (2) + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 25, normalized size = 1.25 \begin {gather*} \frac {x^2\,\left (2\,\mathrm {e}\,\ln \relax (2)+4\right )}{2\,\left (\mathrm {e}\,\ln \relax (2)+2\right )}-\frac {x\,\left (\ln \relax (2)\,\left (\mathrm {e}+2\right )+2\right )}{\mathrm {e}\,\ln \relax (2)+2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.07, size = 27, normalized size = 1.35 \begin {gather*} x^{2} + \frac {x \left (-2 - e \log {\relax (2 )} - 2 \log {\relax (2 )}\right )}{e \log {\relax (2 )} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________