Optimal. Leaf size=23 \[ e^2-e^x-e (-9+x)+\frac {5}{x}-2 x \]
________________________________________________________________________________________
Rubi [A] time = 0.33, antiderivative size = 17, normalized size of antiderivative = 0.74, number of steps used = 7, number of rules used = 4, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.078, Rules used = {1593, 6688, 14, 2194} \begin {gather*} -((2+e) x)-e^x+\frac {5}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 1593
Rule 2194
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {45-5 x+18 x^2-e (-9+x) x^2-2 x^3+e^x \left (9 x^2-x^3\right )}{(-9+x) x^2} \, dx\\ &=\int \frac {-5-\left (2+e+e^x\right ) x^2}{x^2} \, dx\\ &=\int \left (-e^x+\frac {-5-(2+e) x^2}{x^2}\right ) \, dx\\ &=-\int e^x \, dx+\int \frac {-5-(2+e) x^2}{x^2} \, dx\\ &=-e^x+\int \left (-2 \left (1+\frac {e}{2}\right )-\frac {5}{x^2}\right ) \, dx\\ &=-e^x+\frac {5}{x}-(2+e) x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 17, normalized size = 0.74 \begin {gather*} -e^x+\frac {5}{x}-(2+e) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.29, size = 22, normalized size = 0.96 \begin {gather*} -\frac {x^{2} e + 2 \, x^{2} + x e^{x} - 5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 22, normalized size = 0.96 \begin {gather*} -\frac {x^{2} e + 2 \, x^{2} + x e^{x} - 5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.36, size = 19, normalized size = 0.83
method | result | size |
risch | \(-x \,{\mathrm e}-2 x +\frac {5}{x}-{\mathrm e}^{x}\) | \(19\) |
norman | \(\frac {5+\left (-{\mathrm e}-2\right ) x^{2}-{\mathrm e}^{x} x}{x}\) | \(22\) |
default | \(-{\mathrm e}^{\ln \left (x -9\right )+1}-2 x +\frac {5}{x}-{\mathrm e}^{x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -{\left (x + 9 \, \log \left (x - 9\right )\right )} e - 9 \, e^{9} E_{1}\left (-x + 9\right ) + 9 \, e \log \left (x - 9\right ) - 2 \, x - \frac {x e^{x}}{x - 9} + \frac {5}{x} - 9 \, \int \frac {e^{x}}{x^{2} - 18 \, x + 81}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.15, size = 17, normalized size = 0.74 \begin {gather*} \frac {5}{x}-x\,\left (\mathrm {e}+2\right )-{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 12, normalized size = 0.52 \begin {gather*} - x \left (2 + e\right ) - e^{x} + \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________