Optimal. Leaf size=29 \[ -2+\left (e^x-x\right )^2-x-\frac {15 (4-2 x)}{x-\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 2.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-60+90 x-x^3+2 e^{2 x} x^3+2 x^4+e^x \left (-2 x^3-2 x^4\right )+\left (-30 x+2 x^2-4 e^{2 x} x^2-4 x^3+e^x \left (4 x^2+4 x^3\right )\right ) \log (x)+\left (-x+2 e^{2 x} x+2 x^2+e^x \left (-2 x-2 x^2\right )\right ) \log ^2(x)}{x^3-2 x^2 \log (x)+x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-60+90 x-x^3+2 e^{2 x} x^3+2 x^4+e^x \left (-2 x^3-2 x^4\right )+\left (-30 x+2 x^2-4 e^{2 x} x^2-4 x^3+e^x \left (4 x^2+4 x^3\right )\right ) \log (x)+\left (-x+2 e^{2 x} x+2 x^2+e^x \left (-2 x-2 x^2\right )\right ) \log ^2(x)}{x (x-\log (x))^2} \, dx\\ &=\int \left (2 e^{2 x}-2 e^x (1+x)+\frac {90}{(x-\log (x))^2}-\frac {60}{x (x-\log (x))^2}-\frac {x^2}{(x-\log (x))^2}+\frac {2 x^3}{(x-\log (x))^2}-\frac {30 \log (x)}{(x-\log (x))^2}+\frac {2 x \log (x)}{(x-\log (x))^2}-\frac {4 x^2 \log (x)}{(x-\log (x))^2}-\frac {\log ^2(x)}{(x-\log (x))^2}+\frac {2 x \log ^2(x)}{(x-\log (x))^2}\right ) \, dx\\ &=2 \int e^{2 x} \, dx-2 \int e^x (1+x) \, dx+2 \int \frac {x^3}{(x-\log (x))^2} \, dx+2 \int \frac {x \log (x)}{(x-\log (x))^2} \, dx+2 \int \frac {x \log ^2(x)}{(x-\log (x))^2} \, dx-4 \int \frac {x^2 \log (x)}{(x-\log (x))^2} \, dx-30 \int \frac {\log (x)}{(x-\log (x))^2} \, dx-60 \int \frac {1}{x (x-\log (x))^2} \, dx+90 \int \frac {1}{(x-\log (x))^2} \, dx-\int \frac {x^2}{(x-\log (x))^2} \, dx-\int \frac {\log ^2(x)}{(x-\log (x))^2} \, dx\\ &=e^{2 x}-2 e^x (1+x)+2 \int e^x \, dx+2 \int \left (\frac {x^2}{(x-\log (x))^2}-\frac {x}{x-\log (x)}\right ) \, dx+2 \int \left (x+\frac {x^3}{(x-\log (x))^2}-\frac {2 x^2}{x-\log (x)}\right ) \, dx+2 \int \frac {x^3}{(x-\log (x))^2} \, dx-4 \int \left (\frac {x^3}{(x-\log (x))^2}-\frac {x^2}{x-\log (x)}\right ) \, dx-30 \int \left (\frac {x}{(x-\log (x))^2}+\frac {1}{-x+\log (x)}\right ) \, dx-60 \int \frac {1}{x (x-\log (x))^2} \, dx+90 \int \frac {1}{(x-\log (x))^2} \, dx-\int \left (1+\frac {x^2}{(x-\log (x))^2}-\frac {2 x}{x-\log (x)}\right ) \, dx-\int \frac {x^2}{(x-\log (x))^2} \, dx\\ &=2 e^x+e^{2 x}-x+x^2-2 e^x (1+x)+2 \int \frac {x^2}{(x-\log (x))^2} \, dx+2 \left (2 \int \frac {x^3}{(x-\log (x))^2} \, dx\right )-4 \int \frac {x^3}{(x-\log (x))^2} \, dx-30 \int \frac {x}{(x-\log (x))^2} \, dx-30 \int \frac {1}{-x+\log (x)} \, dx-60 \int \frac {1}{x (x-\log (x))^2} \, dx+90 \int \frac {1}{(x-\log (x))^2} \, dx-2 \int \frac {x^2}{(x-\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 31, normalized size = 1.07 \begin {gather*} e^{2 x}-x-2 e^x x+x^2-\frac {30 (-2+x)}{-x+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.49, size = 55, normalized size = 1.90 \begin {gather*} \frac {x^{3} - 2 \, x^{2} e^{x} - x^{2} + x e^{\left (2 \, x\right )} - {\left (x^{2} - 2 \, x e^{x} - x + e^{\left (2 \, x\right )}\right )} \log \relax (x) + 30 \, x - 60}{x - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.58, size = 61, normalized size = 2.10 \begin {gather*} \frac {x^{3} - 2 \, x^{2} e^{x} - x^{2} \log \relax (x) + 2 \, x e^{x} \log \relax (x) - x^{2} + x e^{\left (2 \, x\right )} + x \log \relax (x) - e^{\left (2 \, x\right )} \log \relax (x) + 30 \, x - 60}{x - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 30, normalized size = 1.03
method | result | size |
risch | \(x^{2}-2 \,{\mathrm e}^{x} x +{\mathrm e}^{2 x}-x +\frac {30 x -60}{x -\ln \relax (x )}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 57, normalized size = 1.97 \begin {gather*} \frac {x^{3} - x^{2} + {\left (x - \log \relax (x)\right )} e^{\left (2 \, x\right )} - 2 \, {\left (x^{2} - x \log \relax (x)\right )} e^{x} - {\left (x^{2} - x\right )} \log \relax (x) + 30 \, x - 60}{x - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.47, size = 56, normalized size = 1.93 \begin {gather*} {\mathrm {e}}^{2\,x}-x+\frac {30}{x-1}-2\,x\,{\mathrm {e}}^x+x^2-\frac {\frac {30\,\left (3\,x-2\right )}{x-1}-\frac {30\,x\,\ln \relax (x)}{x-1}}{x-\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 26, normalized size = 0.90 \begin {gather*} x^{2} - 2 x e^{x} - x + \frac {60 - 30 x}{- x + \log {\relax (x )}} + e^{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________