Optimal. Leaf size=29 \[ \frac {5 \left (\frac {1}{3}+\frac {1}{2} \left (3+\frac {5 \left (e^x+x\right )}{3+x}\right ) \log (4)\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.82, antiderivative size = 54, normalized size of antiderivative = 1.86, number of steps used = 19, number of rules used = 8, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {1594, 27, 12, 6742, 44, 2177, 2178, 893} \begin {gather*} \frac {5}{3 x}-\frac {25 e^x \log (4)}{6 (x+3)}+\frac {25 \log (4)}{2 (x+3)}+\frac {25 e^x \log (4)}{6 x}+\frac {15 \log (4)}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 44
Rule 893
Rule 1594
Rule 2177
Rule 2178
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-90-60 x-10 x^2+\left (-405-270 x-120 x^2\right ) \log (4)+e^x \left (-225+75 x+75 x^2\right ) \log (4)}{x^2 \left (54+36 x+6 x^2\right )} \, dx\\ &=\int \frac {-90-60 x-10 x^2+\left (-405-270 x-120 x^2\right ) \log (4)+e^x \left (-225+75 x+75 x^2\right ) \log (4)}{6 x^2 (3+x)^2} \, dx\\ &=\frac {1}{6} \int \frac {-90-60 x-10 x^2+\left (-405-270 x-120 x^2\right ) \log (4)+e^x \left (-225+75 x+75 x^2\right ) \log (4)}{x^2 (3+x)^2} \, dx\\ &=\frac {1}{6} \int \left (-\frac {10}{(3+x)^2}-\frac {90}{x^2 (3+x)^2}-\frac {60}{x (3+x)^2}+\frac {75 e^x \left (-3+x+x^2\right ) \log (4)}{x^2 (3+x)^2}-\frac {15 \left (27+18 x+8 x^2\right ) \log (4)}{x^2 (3+x)^2}\right ) \, dx\\ &=\frac {5}{3 (3+x)}-10 \int \frac {1}{x (3+x)^2} \, dx-15 \int \frac {1}{x^2 (3+x)^2} \, dx-\frac {1}{2} (5 \log (4)) \int \frac {27+18 x+8 x^2}{x^2 (3+x)^2} \, dx+\frac {1}{2} (25 \log (4)) \int \frac {e^x \left (-3+x+x^2\right )}{x^2 (3+x)^2} \, dx\\ &=\frac {5}{3 (3+x)}-10 \int \left (\frac {1}{9 x}-\frac {1}{3 (3+x)^2}-\frac {1}{9 (3+x)}\right ) \, dx-15 \int \left (\frac {1}{9 x^2}-\frac {2}{27 x}+\frac {1}{9 (3+x)^2}+\frac {2}{27 (3+x)}\right ) \, dx-\frac {1}{2} (5 \log (4)) \int \left (\frac {3}{x^2}+\frac {5}{(3+x)^2}\right ) \, dx+\frac {1}{2} (25 \log (4)) \int \left (-\frac {e^x}{3 x^2}+\frac {e^x}{3 x}+\frac {e^x}{3 (3+x)^2}-\frac {e^x}{3 (3+x)}\right ) \, dx\\ &=\frac {5}{3 x}+\frac {15 \log (4)}{2 x}+\frac {25 \log (4)}{2 (3+x)}-\frac {1}{6} (25 \log (4)) \int \frac {e^x}{x^2} \, dx+\frac {1}{6} (25 \log (4)) \int \frac {e^x}{x} \, dx+\frac {1}{6} (25 \log (4)) \int \frac {e^x}{(3+x)^2} \, dx-\frac {1}{6} (25 \log (4)) \int \frac {e^x}{3+x} \, dx\\ &=\frac {5}{3 x}+\frac {15 \log (4)}{2 x}+\frac {25 e^x \log (4)}{6 x}+\frac {25 \log (4)}{2 (3+x)}-\frac {25 e^x \log (4)}{6 (3+x)}+\frac {25}{6} \text {Ei}(x) \log (4)-\frac {25 \text {Ei}(3+x) \log (4)}{6 e^3}-\frac {1}{6} (25 \log (4)) \int \frac {e^x}{x} \, dx+\frac {1}{6} (25 \log (4)) \int \frac {e^x}{3+x} \, dx\\ &=\frac {5}{3 x}+\frac {15 \log (4)}{2 x}+\frac {25 e^x \log (4)}{6 x}+\frac {25 \log (4)}{2 (3+x)}-\frac {25 e^x \log (4)}{6 (3+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 33, normalized size = 1.14 \begin {gather*} \frac {5 \left (6+15 e^x \log (4)+x (2+24 \log (4))+6 \log (512)\right )}{6 x (3+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 29, normalized size = 1.00 \begin {gather*} \frac {5 \, {\left (3 \, {\left (8 \, x + 9\right )} \log \relax (2) + 15 \, e^{x} \log \relax (2) + x + 3\right )}}{3 \, {\left (x^{2} + 3 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 29, normalized size = 1.00 \begin {gather*} \frac {5 \, {\left (24 \, x \log \relax (2) + 15 \, e^{x} \log \relax (2) + x + 27 \, \log \relax (2) + 3\right )}}{3 \, {\left (x^{2} + 3 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 30, normalized size = 1.03
method | result | size |
norman | \(\frac {\left (\frac {5}{3}+40 \ln \relax (2)\right ) x +25 \,{\mathrm e}^{x} \ln \relax (2)+5+45 \ln \relax (2)}{\left (3+x \right ) x}\) | \(30\) |
risch | \(\frac {\left (\frac {5}{3}+40 \ln \relax (2)\right ) x +5+45 \ln \relax (2)}{\left (3+x \right ) x}+\frac {25 \ln \relax (2) {\mathrm e}^{x}}{\left (3+x \right ) x}\) | \(39\) |
default | \(\frac {5}{3 x}+\frac {15 \ln \relax (2)}{x}+\frac {25 \ln \relax (2)}{3+x}+\frac {25 \ln \relax (2) {\mathrm e}^{x}}{3 x}-\frac {25 \ln \relax (2) {\mathrm e}^{x}}{3 \left (3+x \right )}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.93, size = 99, normalized size = 3.41 \begin {gather*} 5 \, {\left (\frac {3 \, {\left (2 \, x + 3\right )}}{x^{2} + 3 \, x} - 2 \, \log \left (x + 3\right ) + 2 \, \log \relax (x)\right )} \log \relax (2) - 10 \, {\left (\frac {3}{x + 3} - \log \left (x + 3\right ) + \log \relax (x)\right )} \log \relax (2) + \frac {25 \, e^{x} \log \relax (2)}{x^{2} + 3 \, x} + \frac {5 \, {\left (2 \, x + 3\right )}}{3 \, {\left (x^{2} + 3 \, x\right )}} + \frac {40 \, \log \relax (2)}{x + 3} - \frac {5}{3 \, {\left (x + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.35, size = 35, normalized size = 1.21 \begin {gather*} \frac {135\,\ln \relax (2)-x^2\,\left (40\,\ln \relax (2)+\frac {5}{3}\right )+75\,{\mathrm {e}}^x\,\ln \relax (2)+15}{3\,x^2+9\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 39, normalized size = 1.34 \begin {gather*} - \frac {x \left (- 120 \log {\relax (2 )} - 5\right ) - 135 \log {\relax (2 )} - 15}{3 x^{2} + 9 x} + \frac {25 e^{x} \log {\relax (2 )}}{x^{2} + 3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________