Optimal. Leaf size=24 \[ 4 \left (x \left (3-\log \left (\frac {7}{4}\right )\right )-\frac {e^{1+x}}{\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.73, antiderivative size = 23, normalized size of antiderivative = 0.96, number of steps used = 5, number of rules used = 4, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {6741, 12, 6742, 2202} \begin {gather*} 4 x \left (3-\log \left (\frac {7}{4}\right )\right )-\frac {4 e^{x+1}}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2202
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (e^{1+x}-e^{1+x} x \log (x)+3 x \left (1-\frac {1}{3} \log \left (\frac {7}{4}\right )\right ) \log ^2(x)\right )}{x \log ^2(x)} \, dx\\ &=4 \int \frac {e^{1+x}-e^{1+x} x \log (x)+3 x \left (1-\frac {1}{3} \log \left (\frac {7}{4}\right )\right ) \log ^2(x)}{x \log ^2(x)} \, dx\\ &=4 \int \left (3 \left (1-\frac {1}{3} \log \left (\frac {7}{4}\right )\right )-\frac {e^{1+x} (-1+x \log (x))}{x \log ^2(x)}\right ) \, dx\\ &=4 x \left (3-\log \left (\frac {7}{4}\right )\right )-4 \int \frac {e^{1+x} (-1+x \log (x))}{x \log ^2(x)} \, dx\\ &=4 x \left (3-\log \left (\frac {7}{4}\right )\right )-\frac {4 e^{1+x}}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 22, normalized size = 0.92 \begin {gather*} 12 x-4 x \log \left (\frac {7}{4}\right )-\frac {4 e^{1+x}}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 22, normalized size = 0.92 \begin {gather*} -\frac {4 \, {\left ({\left (x \log \left (\frac {7}{4}\right ) - 3 \, x\right )} \log \relax (x) + e^{\left (x + 1\right )}\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 29, normalized size = 1.21 \begin {gather*} -\frac {4 \, {\left (x \log \relax (7) \log \relax (x) - 2 \, x \log \relax (2) \log \relax (x) - 3 \, x \log \relax (x) + e^{\left (x + 1\right )}\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 20, normalized size = 0.83
method | result | size |
default | \(12 x -\frac {4 \,{\mathrm e}^{x +1}}{\ln \relax (x )}-4 x \ln \left (\frac {7}{4}\right )\) | \(20\) |
risch | \(8 x \ln \relax (2)-4 x \ln \relax (7)+12 x -\frac {4 \,{\mathrm e}^{x +1}}{\ln \relax (x )}\) | \(25\) |
norman | \(\frac {\left (-4 \ln \relax (7)+8 \ln \relax (2)+12\right ) x \ln \relax (x )-4 \,{\mathrm e}^{x +1}}{\ln \relax (x )}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 19, normalized size = 0.79 \begin {gather*} -4 \, x \log \left (\frac {7}{4}\right ) + 12 \, x - \frac {4 \, e^{\left (x + 1\right )}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.18, size = 20, normalized size = 0.83 \begin {gather*} -x\,\left (4\,\ln \left (\frac {7}{4}\right )-12\right )-\frac {4\,{\mathrm {e}}^{x+1}}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 22, normalized size = 0.92 \begin {gather*} x \left (- 4 \log {\relax (7 )} + 8 \log {\relax (2 )} + 12\right ) - \frac {4 e^{x + 1}}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________