Optimal. Leaf size=26 \[ x \left (-x+\left (-1-e^{5/x}\right ) x^7-\log (\log (25))\right ) \]
________________________________________________________________________________________
Rubi [C] time = 0.10, antiderivative size = 35, normalized size of antiderivative = 1.35, number of steps used = 6, number of rules used = 3, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {1593, 2226, 2218} \begin {gather*} -x^8-x^2-x \log (\log (25))-3125000 \Gamma \left (-8,-\frac {5}{x}\right )-390625 \Gamma \left (-7,-\frac {5}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2218
Rule 2226
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-x^2-x^8-x \log (\log (25))+\int e^{5/x} \left (5 x^6-8 x^7\right ) \, dx\\ &=-x^2-x^8-x \log (\log (25))+\int e^{5/x} (5-8 x) x^6 \, dx\\ &=-x^2-x^8-x \log (\log (25))+\int \left (5 e^{5/x} x^6-8 e^{5/x} x^7\right ) \, dx\\ &=-x^2-x^8-x \log (\log (25))+5 \int e^{5/x} x^6 \, dx-8 \int e^{5/x} x^7 \, dx\\ &=-x^2-x^8-3125000 \Gamma \left (-8,-\frac {5}{x}\right )-390625 \Gamma \left (-7,-\frac {5}{x}\right )-x \log (\log (25))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.02, size = 35, normalized size = 1.35 \begin {gather*} -x^2-x^8-3125000 \Gamma \left (-8,-\frac {5}{x}\right )-390625 \Gamma \left (-7,-\frac {5}{x}\right )-x \log (\log (25)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 30, normalized size = 1.15 \begin {gather*} -x^{8} e^{\frac {5}{x}} - x^{8} - x^{2} - x \log \left (2 \, \log \relax (5)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 30, normalized size = 1.15 \begin {gather*} -x^{8} e^{\frac {5}{x}} - x^{8} - x^{2} - x \log \left (2 \, \log \relax (5)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 31, normalized size = 1.19
method | result | size |
default | \(-x^{8} {\mathrm e}^{\frac {5}{x}}-x^{2}-x^{8}-\ln \left (2 \ln \relax (5)\right ) x\) | \(31\) |
derivativedivides | \(-x^{8}-x^{2}-x^{8} {\mathrm e}^{\frac {5}{x}}-x \ln \relax (2)-x \ln \left (\ln \relax (5)\right )\) | \(34\) |
risch | \(-x^{8}-x^{2}-x^{8} {\mathrm e}^{\frac {5}{x}}-x \ln \relax (2)-x \ln \left (\ln \relax (5)\right )\) | \(34\) |
norman | \(\left (-\ln \relax (2)-\ln \left (\ln \relax (5)\right )\right ) x -x^{2}-x^{8}-x^{8} {\mathrm e}^{\frac {5}{x}}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 30, normalized size = 1.15 \begin {gather*} -x^{8} e^{\frac {5}{x}} - x^{8} - x^{2} - x \log \left (2 \, \log \relax (5)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.15, size = 28, normalized size = 1.08 \begin {gather*} -x\,\ln \left (\ln \left (25\right )\right )-x^8\,{\mathrm {e}}^{5/x}-x^2-x^8 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 26, normalized size = 1.00 \begin {gather*} - x^{8} e^{\frac {5}{x}} - x^{8} - x^{2} + x \left (- \log {\relax (2 )} - \log {\left (\log {\relax (5 )} \right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________