Optimal. Leaf size=26 \[ x \left (-e^{2 e^{12}-\frac {3 x}{4}}+x+3 (2+x)\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.15, antiderivative size = 95, normalized size of antiderivative = 3.65, number of steps used = 12, number of rules used = 4, integrand size = 61, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.066, Rules used = {12, 2176, 2194, 2196} \begin {gather*} 16 x^3-8 e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} x^2+48 x^2-12 e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} x+36 x+\frac {2}{3} e^{\frac {1}{2} \left (8 e^{12}-3 x\right )}-\frac {1}{3} e^{\frac {1}{2} \left (8 e^{12}-3 x\right )} (2-3 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \left (72+e^{\frac {1}{2} \left (8 e^{12}-3 x\right )} (2-3 x)+192 x+96 x^2+e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} \left (-24-14 x+12 x^2\right )\right ) \, dx\\ &=36 x+48 x^2+16 x^3+\frac {1}{2} \int e^{\frac {1}{2} \left (8 e^{12}-3 x\right )} (2-3 x) \, dx+\frac {1}{2} \int e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} \left (-24-14 x+12 x^2\right ) \, dx\\ &=-\frac {1}{3} e^{\frac {1}{2} \left (8 e^{12}-3 x\right )} (2-3 x)+36 x+48 x^2+16 x^3+\frac {1}{2} \int \left (-24 e^{\frac {1}{4} \left (8 e^{12}-3 x\right )}-14 e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} x+12 e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} x^2\right ) \, dx-\int e^{\frac {1}{2} \left (8 e^{12}-3 x\right )} \, dx\\ &=\frac {2}{3} e^{\frac {1}{2} \left (8 e^{12}-3 x\right )}-\frac {1}{3} e^{\frac {1}{2} \left (8 e^{12}-3 x\right )} (2-3 x)+36 x+48 x^2+16 x^3+6 \int e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} x^2 \, dx-7 \int e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} x \, dx-12 \int e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} \, dx\\ &=16 e^{\frac {1}{4} \left (8 e^{12}-3 x\right )}+\frac {2}{3} e^{\frac {1}{2} \left (8 e^{12}-3 x\right )}-\frac {1}{3} e^{\frac {1}{2} \left (8 e^{12}-3 x\right )} (2-3 x)+36 x+\frac {28}{3} e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} x+48 x^2-8 e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} x^2+16 x^3-\frac {28}{3} \int e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} \, dx+16 \int e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} x \, dx\\ &=\frac {256}{9} e^{\frac {1}{4} \left (8 e^{12}-3 x\right )}+\frac {2}{3} e^{\frac {1}{2} \left (8 e^{12}-3 x\right )}-\frac {1}{3} e^{\frac {1}{2} \left (8 e^{12}-3 x\right )} (2-3 x)+36 x-12 e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} x+48 x^2-8 e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} x^2+16 x^3+\frac {64}{3} \int e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} \, dx\\ &=\frac {2}{3} e^{\frac {1}{2} \left (8 e^{12}-3 x\right )}-\frac {1}{3} e^{\frac {1}{2} \left (8 e^{12}-3 x\right )} (2-3 x)+36 x-12 e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} x+48 x^2-8 e^{\frac {1}{4} \left (8 e^{12}-3 x\right )} x^2+16 x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 33, normalized size = 1.27 \begin {gather*} e^{-3 x/2} x \left (e^{2 e^{12}}-2 e^{3 x/4} (3+2 x)\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.62, size = 45, normalized size = 1.73 \begin {gather*} 16 \, x^{3} + 48 \, x^{2} - 4 \, {\left (2 \, x^{2} + 3 \, x\right )} e^{\left (-\frac {3}{4} \, x + 2 \, e^{12}\right )} + x e^{\left (-\frac {3}{2} \, x + 4 \, e^{12}\right )} + 36 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 45, normalized size = 1.73 \begin {gather*} 16 \, x^{3} + 48 \, x^{2} - 4 \, {\left (2 \, x^{2} + 3 \, x\right )} e^{\left (-\frac {3}{4} \, x + 2 \, e^{12}\right )} + x e^{\left (-\frac {3}{2} \, x + 4 \, e^{12}\right )} + 36 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 46, normalized size = 1.77
method | result | size |
risch | \({\mathrm e}^{4 \,{\mathrm e}^{12}-\frac {3 x}{2}} x +\frac {\left (-16 x^{2}-24 x \right ) {\mathrm e}^{2 \,{\mathrm e}^{12}-\frac {3 x}{4}}}{2}+16 x^{3}+48 x^{2}+36 x\) | \(46\) |
norman | \({\mathrm e}^{4 \,{\mathrm e}^{12}-\frac {3 x}{2}} x +36 x +48 x^{2}+16 x^{3}-12 \,{\mathrm e}^{2 \,{\mathrm e}^{12}-\frac {3 x}{4}} x -8 \,{\mathrm e}^{2 \,{\mathrm e}^{12}-\frac {3 x}{4}} x^{2}\) | \(54\) |
default | \(16 x^{3}+48 x^{2}+36 x -\frac {4 \,{\mathrm e}^{4 \,{\mathrm e}^{12}-\frac {3 x}{2}} \left (2 \,{\mathrm e}^{12}-\frac {3 x}{4}\right )}{3}+\frac {8 \,{\mathrm e}^{4 \,{\mathrm e}^{12}-\frac {3 x}{2}} {\mathrm e}^{12}}{3}+16 \,{\mathrm e}^{2 \,{\mathrm e}^{12}-\frac {3 x}{4}} \left (2 \,{\mathrm e}^{12}-\frac {3 x}{4}\right )-\frac {128 \,{\mathrm e}^{2 \,{\mathrm e}^{12}-\frac {3 x}{4}} \left (2 \,{\mathrm e}^{12}-\frac {3 x}{4}\right )^{2}}{9}+\frac {224 \,{\mathrm e}^{2 \,{\mathrm e}^{12}-\frac {3 x}{4}} {\mathrm e}^{12}}{9}-\frac {512 \,{\mathrm e}^{2 \,{\mathrm e}^{12}-\frac {3 x}{4}} {\mathrm e}^{24}}{9}+\frac {512 \,{\mathrm e}^{12} \left ({\mathrm e}^{2 \,{\mathrm e}^{12}-\frac {3 x}{4}} \left (2 \,{\mathrm e}^{12}-\frac {3 x}{4}\right )-{\mathrm e}^{2 \,{\mathrm e}^{12}-\frac {3 x}{4}}\right )}{9}\) | \(153\) |
derivativedivides | \(-96 \,{\mathrm e}^{12}+36 x +\frac {256 \left (2 \,{\mathrm e}^{12}-\frac {3 x}{4}\right )^{2}}{3}+16 x^{3}-\frac {4 \,{\mathrm e}^{4 \,{\mathrm e}^{12}-\frac {3 x}{2}} \left (2 \,{\mathrm e}^{12}-\frac {3 x}{4}\right )}{3}+\frac {8 \,{\mathrm e}^{4 \,{\mathrm e}^{12}-\frac {3 x}{2}} {\mathrm e}^{12}}{3}+16 \,{\mathrm e}^{2 \,{\mathrm e}^{12}-\frac {3 x}{4}} \left (2 \,{\mathrm e}^{12}-\frac {3 x}{4}\right )-\frac {128 \,{\mathrm e}^{2 \,{\mathrm e}^{12}-\frac {3 x}{4}} \left (2 \,{\mathrm e}^{12}-\frac {3 x}{4}\right )^{2}}{9}+\frac {224 \,{\mathrm e}^{2 \,{\mathrm e}^{12}-\frac {3 x}{4}} {\mathrm e}^{12}}{9}-\frac {512 \,{\mathrm e}^{2 \,{\mathrm e}^{12}-\frac {3 x}{4}} {\mathrm e}^{24}}{9}+\frac {512 \,{\mathrm e}^{12} \left ({\mathrm e}^{2 \,{\mathrm e}^{12}-\frac {3 x}{4}} \left (2 \,{\mathrm e}^{12}-\frac {3 x}{4}\right )-{\mathrm e}^{2 \,{\mathrm e}^{12}-\frac {3 x}{4}}\right )}{9}-\frac {1024 \left (2 \,{\mathrm e}^{12}-\frac {3 x}{4}\right ) {\mathrm e}^{12}}{3}\) | \(176\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.66, size = 50, normalized size = 1.92 \begin {gather*} 16 \, x^{3} + 48 \, x^{2} - 4 \, {\left (2 \, x^{2} e^{\left (2 \, e^{12}\right )} + 3 \, x e^{\left (2 \, e^{12}\right )}\right )} e^{\left (-\frac {3}{4} \, x\right )} + x e^{\left (-\frac {3}{2} \, x + 4 \, e^{12}\right )} + 36 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.17, size = 38, normalized size = 1.46 \begin {gather*} x\,{\mathrm {e}}^{4\,{\mathrm {e}}^{12}-\frac {3\,x}{2}}\,{\left (6\,{\mathrm {e}}^{\frac {3\,x}{4}-2\,{\mathrm {e}}^{12}}+4\,x\,{\mathrm {e}}^{\frac {3\,x}{4}-2\,{\mathrm {e}}^{12}}-1\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.13, size = 48, normalized size = 1.85 \begin {gather*} 16 x^{3} + 48 x^{2} + x e^{- \frac {3 x}{2} + 4 e^{12}} + 36 x + \left (- 8 x^{2} - 12 x\right ) e^{- \frac {3 x}{4} + 2 e^{12}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________