Optimal. Leaf size=22 \[ \frac {\log \left (\frac {\log \left (\frac {1}{4} \log ^2\left (1+e^{16}\right )\right )}{x}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {2303} \begin {gather*} \frac {\log \left (\frac {\log \left (\frac {1}{4} \log ^2\left (1+e^{16}\right )\right )}{x}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2303
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\log \left (\frac {\log \left (\frac {1}{4} \log ^2\left (1+e^{16}\right )\right )}{x}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 22, normalized size = 1.00 \begin {gather*} \frac {\log \left (\frac {\log \left (\frac {1}{4} \log ^2\left (1+e^{16}\right )\right )}{x}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 19, normalized size = 0.86 \begin {gather*} \frac {\log \left (\frac {\log \left (\frac {1}{4} \, \log \left (e^{16} + 1\right )^{2}\right )}{x}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 19, normalized size = 0.86 \begin {gather*} \frac {\log \left (\frac {\log \left (\frac {1}{4} \, \log \left (e^{16} + 1\right )^{2}\right )}{x}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 0.91
method | result | size |
derivativedivides | \(\frac {\ln \left (\frac {\ln \left (\frac {\ln \left ({\mathrm e}^{16}+1\right )^{2}}{4}\right )}{x}\right )}{x}\) | \(20\) |
default | \(\frac {\ln \left (\frac {\ln \left (\frac {\ln \left ({\mathrm e}^{16}+1\right )^{2}}{4}\right )}{x}\right )}{x}\) | \(20\) |
norman | \(\frac {\ln \left (\frac {\ln \left (\frac {\ln \left ({\mathrm e}^{16}+1\right )^{2}}{4}\right )}{x}\right )}{x}\) | \(20\) |
risch | \(\frac {\ln \left (\frac {-2 \ln \relax (2)+2 \ln \left (\ln \left ({\mathrm e}^{16}+1\right )\right )}{x}\right )}{x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 62, normalized size = 2.82 \begin {gather*} \frac {\frac {\log \left (\frac {1}{4} \, \log \left (e^{16} + 1\right )^{2}\right ) \log \left (\frac {\log \left (\frac {1}{4} \, \log \left (e^{16} + 1\right )^{2}\right )}{x}\right )}{x} - \frac {\log \left (\frac {1}{4} \, \log \left (e^{16} + 1\right )^{2}\right )}{x}}{\log \left (\frac {1}{4} \, \log \left (e^{16} + 1\right )^{2}\right )} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.20, size = 20, normalized size = 0.91 \begin {gather*} \frac {\ln \left (\frac {1}{x}\right )+\ln \left (\ln \left (\frac {{\ln \left ({\mathrm {e}}^{16}+1\right )}^2}{4}\right )\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 15, normalized size = 0.68 \begin {gather*} \frac {\log {\left (\frac {\log {\left (\frac {\log {\left (1 + e^{16} \right )}^{2}}{4} \right )}}{x} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________