Optimal. Leaf size=25 \[ \frac {2}{\log \left (16+\frac {x}{4}+\frac {e+4 x}{(4-x)^2}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {256+16 e-64 x+24 x^2-2 x^3}{\left (-4096+2944 x-704 x^2+52 x^3+x^4+e (-16+4 x)\right ) \log ^2\left (\frac {1024+4 e-480 x+56 x^2+x^3}{64-32 x+4 x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-16 (16+e)+64 x-24 x^2+2 x^3}{\left (16 (256+e)-4 (736+e) x+704 x^2-52 x^3-x^4\right ) \log ^2\left (\frac {4 (256+e)-480 x+56 x^2+x^3}{64-32 x+4 x^2}\right )} \, dx\\ &=\int \left (\frac {4}{(-4+x) \log ^2\left (\frac {4 (256+e)-480 x+56 x^2+x^3}{4 (-4+x)^2}\right )}+\frac {2 \left (480-112 x-3 x^2\right )}{\left (4 (256+e)-480 x+56 x^2+x^3\right ) \log ^2\left (\frac {4 (256+e)-480 x+56 x^2+x^3}{4 (-4+x)^2}\right )}\right ) \, dx\\ &=2 \int \frac {480-112 x-3 x^2}{\left (4 (256+e)-480 x+56 x^2+x^3\right ) \log ^2\left (\frac {4 (256+e)-480 x+56 x^2+x^3}{4 (-4+x)^2}\right )} \, dx+4 \int \frac {1}{(-4+x) \log ^2\left (\frac {4 (256+e)-480 x+56 x^2+x^3}{4 (-4+x)^2}\right )} \, dx\\ &=2 \int \left (\frac {112 x}{\left (-4 (256+e)+480 x-56 x^2-x^3\right ) \log ^2\left (\frac {4 (256+e)-480 x+56 x^2+x^3}{4 (-4+x)^2}\right )}+\frac {3 x^2}{\left (-4 (256+e)+480 x-56 x^2-x^3\right ) \log ^2\left (\frac {4 (256+e)-480 x+56 x^2+x^3}{4 (-4+x)^2}\right )}+\frac {480}{\left (4 (256+e)-480 x+56 x^2+x^3\right ) \log ^2\left (\frac {4 (256+e)-480 x+56 x^2+x^3}{4 (-4+x)^2}\right )}\right ) \, dx+4 \int \frac {1}{(-4+x) \log ^2\left (\frac {4 (256+e)-480 x+56 x^2+x^3}{4 (-4+x)^2}\right )} \, dx\\ &=4 \int \frac {1}{(-4+x) \log ^2\left (\frac {4 (256+e)-480 x+56 x^2+x^3}{4 (-4+x)^2}\right )} \, dx+6 \int \frac {x^2}{\left (-4 (256+e)+480 x-56 x^2-x^3\right ) \log ^2\left (\frac {4 (256+e)-480 x+56 x^2+x^3}{4 (-4+x)^2}\right )} \, dx+224 \int \frac {x}{\left (-4 (256+e)+480 x-56 x^2-x^3\right ) \log ^2\left (\frac {4 (256+e)-480 x+56 x^2+x^3}{4 (-4+x)^2}\right )} \, dx+960 \int \frac {1}{\left (4 (256+e)-480 x+56 x^2+x^3\right ) \log ^2\left (\frac {4 (256+e)-480 x+56 x^2+x^3}{4 (-4+x)^2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 30, normalized size = 1.20 \begin {gather*} \frac {2}{\log \left (\frac {1024+4 e-480 x+56 x^2+x^3}{4 (-4+x)^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 34, normalized size = 1.36 \begin {gather*} \frac {2}{\log \left (\frac {x^{3} + 56 \, x^{2} - 480 \, x + 4 \, e + 1024}{4 \, {\left (x^{2} - 8 \, x + 16\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 36, normalized size = 1.44
method | result | size |
norman | \(\frac {2}{\ln \left (\frac {4 \,{\mathrm e}+x^{3}+56 x^{2}-480 x +1024}{4 x^{2}-32 x +64}\right )}\) | \(36\) |
risch | \(\frac {2}{\ln \left (\frac {4 \,{\mathrm e}+x^{3}+56 x^{2}-480 x +1024}{4 x^{2}-32 x +64}\right )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 35, normalized size = 1.40 \begin {gather*} -\frac {2}{2 \, \log \relax (2) - \log \left (x^{3} + 56 \, x^{2} - 480 \, x + 4 \, e + 1024\right ) + 2 \, \log \left (x - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.76, size = 35, normalized size = 1.40 \begin {gather*} \frac {2}{\ln \left (\frac {x^3+56\,x^2-480\,x+4\,\mathrm {e}+1024}{4\,x^2-32\,x+64}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 31, normalized size = 1.24 \begin {gather*} \frac {2}{\log {\left (\frac {x^{3} + 56 x^{2} - 480 x + 4 e + 1024}{4 x^{2} - 32 x + 64} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________