Optimal. Leaf size=25 \[ -e^8+\frac {3}{x}+\sqrt [4]{2} e^{10} \sqrt [4]{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 20, normalized size of antiderivative = 0.80, number of steps used = 3, number of rules used = 2, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {12, 14} \begin {gather*} \sqrt [4]{2} e^{10} \sqrt [4]{x}+\frac {3}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {-12+e^{\frac {1}{4} (40+\log (2 x))} x}{x^2} \, dx\\ &=\frac {1}{4} \int \left (-\frac {12}{x^2}+\frac {\sqrt [4]{2} e^{10}}{x^{3/4}}\right ) \, dx\\ &=\frac {3}{x}+\sqrt [4]{2} e^{10} \sqrt [4]{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 25, normalized size = 1.00 \begin {gather*} \frac {1}{4} \left (\frac {12}{x}+4 \sqrt [4]{2} e^{10} \sqrt [4]{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 15, normalized size = 0.60 \begin {gather*} \frac {2^{\frac {1}{4}} x^{\frac {5}{4}} e^{10} + 3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 15, normalized size = 0.60 \begin {gather*} \frac {3}{x} + e^{\left (\frac {1}{4} \, \log \left (2 \, x\right ) + 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.01, size = 16, normalized size = 0.64
method | result | size |
default | \({\mathrm e}^{\frac {\ln \left (2 x \right )}{4}+10}+\frac {3}{x}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 15, normalized size = 0.60 \begin {gather*} 2^{\frac {1}{4}} x^{\frac {1}{4}} e^{10} + \frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.17, size = 15, normalized size = 0.60 \begin {gather*} \frac {3}{x}+2^{1/4}\,x^{1/4}\,{\mathrm {e}}^{10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.30, size = 15, normalized size = 0.60 \begin {gather*} \sqrt [4]{2} \sqrt [4]{x} e^{10} + \frac {3}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________