Optimal. Leaf size=25 \[ \left (e^5+e^{e^{-x} x}\right ) \left (1+e^{2-e} x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-e-x} \left (e^{7+x}+e^{e^{-x} x} \left (e^{2+x}+e^e (1-x)+e^2 \left (x-x^2\right )\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{7-e}+e^{-e-x+e^{-x} x} \left (e^e+e^{2+x}+e^2 \left (1-e^{-2+e}\right ) x-e^2 x^2\right )\right ) \, dx\\ &=e^{7-e} x+\int e^{-e-x+e^{-x} x} \left (e^e+e^{2+x}+e^2 \left (1-e^{-2+e}\right ) x-e^2 x^2\right ) \, dx\\ &=e^{7-e} x+\int e^{-e-x+e^{-x} x} \left (e^{2+x}-e^e (-1+x)-e^2 (-1+x) x\right ) \, dx\\ &=e^{7-e} x+\int \left (e^{2-e+e^{-x} x}-e^{-x+e^{-x} x} (-1+x)-e^{2-e-x+e^{-x} x} (-1+x) x\right ) \, dx\\ &=e^{7-e} x+\int e^{2-e+e^{-x} x} \, dx-\int e^{-x+e^{-x} x} (-1+x) \, dx-\int e^{2-e-x+e^{-x} x} (-1+x) x \, dx\\ &=e^{7-e} x+\int e^{2 \left (1-\frac {e}{2}\right )+e^{-x} x} \, dx-\int e^{-e^{-x} \left (-1+e^x\right ) x} (-1+x) \, dx-\int e^{2 \left (1-\frac {e}{2}\right )-x+e^{-x} x} (-1+x) x \, dx\\ &=e^{7-e} x+\int e^{2 \left (1-\frac {e}{2}\right )+e^{-x} x} \, dx-\int \left (-e^{-e^{-x} \left (-1+e^x\right ) x}+e^{-e^{-x} \left (-1+e^x\right ) x} x\right ) \, dx-\int \left (-e^{2 \left (1-\frac {e}{2}\right )-x+e^{-x} x} x+e^{2 \left (1-\frac {e}{2}\right )-x+e^{-x} x} x^2\right ) \, dx\\ &=e^{7-e} x+\int e^{-e^{-x} \left (-1+e^x\right ) x} \, dx+\int e^{2 \left (1-\frac {e}{2}\right )+e^{-x} x} \, dx-\int e^{-e^{-x} \left (-1+e^x\right ) x} x \, dx+\int e^{2 \left (1-\frac {e}{2}\right )-x+e^{-x} x} x \, dx-\int e^{2 \left (1-\frac {e}{2}\right )-x+e^{-x} x} x^2 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.49, size = 31, normalized size = 1.24 \begin {gather*} e^{7-e} x+e^{e^{-x} x} \left (1+e^{2-e} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 27, normalized size = 1.08 \begin {gather*} {\left (x e^{7} + {\left (x e^{2} + e^{e}\right )} e^{\left (x e^{\left (-x\right )}\right )}\right )} e^{\left (-e\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -{\left ({\left ({\left (x^{2} - x\right )} e^{2} + {\left (x - 1\right )} e^{e} - e^{\left (x + 2\right )}\right )} e^{\left (x e^{\left (-x\right )}\right )} - e^{\left (x + 7\right )}\right )} e^{\left (-x - e\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 32, normalized size = 1.28
method | result | size |
risch | \(x \,{\mathrm e}^{7-{\mathrm e}}+\left ({\mathrm e}^{2} x +{\mathrm e}^{{\mathrm e}}\right ) {\mathrm e}^{-{\mathrm e}+x \,{\mathrm e}^{-x}}\) | \(32\) |
norman | \(\left ({\mathrm e}^{x} {\mathrm e}^{x \,{\mathrm e}^{-x}}+{\mathrm e}^{2} {\mathrm e}^{-{\mathrm e}} x \,{\mathrm e}^{x} {\mathrm e}^{x \,{\mathrm e}^{-x}}+{\mathrm e}^{-{\mathrm e}} {\mathrm e}^{2} {\mathrm e}^{5} x \,{\mathrm e}^{x}\right ) {\mathrm e}^{-x}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x e^{\left (-e + 7\right )} + \int -{\left (x^{2} e^{2} - x {\left (e^{2} - e^{e}\right )} - e^{\left (x + 2\right )} - e^{e}\right )} e^{\left (x e^{\left (-x\right )} - x - e\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.43, size = 31, normalized size = 1.24 \begin {gather*} x\,{\mathrm {e}}^{7-\mathrm {e}}+{\mathrm {e}}^{x\,{\mathrm {e}}^{-x}-\mathrm {e}}\,\left ({\mathrm {e}}^{\mathrm {e}}+x\,{\mathrm {e}}^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 31, normalized size = 1.24 \begin {gather*} \frac {x e^{7}}{e^{e}} + \frac {\left (x e^{2} + e^{e}\right ) e^{x e^{- x}}}{e^{e}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________