Optimal. Leaf size=35 \[ 4+e^{x+e^x x}+\frac {5}{-x+\frac {4+x}{4}}-e^x \log (1+x) \]
________________________________________________________________________________________
Rubi [F] time = 0.51, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {60+60 x+e^x \left (-16+24 x-9 x^2\right )+e^{x+e^x x} \left (16-8 x-15 x^2+9 x^3+e^x \left (16+8 x-23 x^2-6 x^3+9 x^4\right )\right )+e^x \left (-16+8 x+15 x^2-9 x^3\right ) \log (1+x)}{16-8 x-15 x^2+9 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{x+e^x x}+\frac {60}{(4-3 x)^2}-\frac {e^x}{1+x}+e^{2 x+e^x x} (1+x)-e^x \log (1+x)\right ) \, dx\\ &=\frac {20}{4-3 x}+\int e^{x+e^x x} \, dx-\int \frac {e^x}{1+x} \, dx+\int e^{2 x+e^x x} (1+x) \, dx-\int e^x \log (1+x) \, dx\\ &=\frac {20}{4-3 x}-\frac {\text {Ei}(1+x)}{e}-e^x \log (1+x)+\int e^{x+e^x x} \, dx+\int \frac {e^x}{1+x} \, dx+\int \left (e^{2 x+e^x x}+e^{2 x+e^x x} x\right ) \, dx\\ &=\frac {20}{4-3 x}-e^x \log (1+x)+\int e^{x+e^x x} \, dx+\int e^{2 x+e^x x} \, dx+\int e^{2 x+e^x x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 28, normalized size = 0.80 \begin {gather*} e^{x+e^x x}-\frac {20}{-4+3 x}-e^x \log (1+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 37, normalized size = 1.06 \begin {gather*} -\frac {{\left (3 \, x - 4\right )} e^{x} \log \left (x + 1\right ) - {\left (3 \, x - 4\right )} e^{\left (x e^{x} + x\right )} + 20}{3 \, x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (9 \, x^{3} - 15 \, x^{2} - 8 \, x + 16\right )} e^{x} \log \left (x + 1\right ) - {\left (9 \, x^{3} - 15 \, x^{2} + {\left (9 \, x^{4} - 6 \, x^{3} - 23 \, x^{2} + 8 \, x + 16\right )} e^{x} - 8 \, x + 16\right )} e^{\left (x e^{x} + x\right )} + {\left (9 \, x^{2} - 24 \, x + 16\right )} e^{x} - 60 \, x - 60}{9 \, x^{3} - 15 \, x^{2} - 8 \, x + 16}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 26, normalized size = 0.74
method | result | size |
risch | \(-\ln \left (x +1\right ) {\mathrm e}^{x}-\frac {20}{3 x -4}+{\mathrm e}^{x \left ({\mathrm e}^{x}+1\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 25, normalized size = 0.71 \begin {gather*} -e^{x} \log \left (x + 1\right ) - \frac {20}{3 \, x - 4} + e^{\left (x e^{x} + x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.36, size = 26, normalized size = 0.74 \begin {gather*} {\mathrm {e}}^{x\,{\mathrm {e}}^x}\,{\mathrm {e}}^x-\frac {20}{3\,\left (x-\frac {4}{3}\right )}-\ln \left (x+1\right )\,{\mathrm {e}}^x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.64, size = 22, normalized size = 0.63 \begin {gather*} - e^{x} \log {\left (x + 1 \right )} + e^{x e^{x} + x} - \frac {60}{9 x - 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________